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What is active causal learning?

e Intervening on a causal system provides important information about causal structure
(Pearl, 2000; Sprites et al., 1993; Steyvers, 2003; Bramley et al., 2014)

e Interventions render intervened-on variables independent of their normal causes:
P(A|Do|B|,C) # P(A|B,C)

e Which interventions are useful depends on the prior and the hypothesis space

e Goal: Maximize probability of identifying the correct graph

1. Reach into the system

5. Repeat

, , 4. Update beliefs
2. Choose an intervention
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3. Observe the outcome
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Strategies for choosing interventions myopically

Probability gain Choose intervention : € I that maximises expected maximum probability ¢
In posterior over causal graphs G € G

E[6(Gli)] = Y pe0 0(Gli, 0)p(0|G. ) where ¢(Gi, 0) = max e plgli, o)
Information gain Choose intervention that minimises expected Shannon entropy
EH(G|I)| = )_,c0 H(Gli,0)p(o|G, I) where — o H(g|I,0) = p(g|I,0)logs p(gli, o)

Can information gain beat probability gain at probability gain?

Bramley et al. (2014), test performance learning all 25 of the 3-variable graphs in an environ-
ment with spontaneous activation rate p = .1 and causal power p = .8:

Performance by simulated strategy Performance by simulated strategy
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Beyond Shannon: Generalized entropy landscapes

Entropy is expected surprise across possible outcomes. Shannon entropy uses the normal
mean (e.g. > . Surprise(x) x p(x)) as expectation and log(1/p(z)) for surprise. Different types
of mean, and different types of surprise, can be used (Crupi and Tentori, 2014). Sharma-

Mittal entropy (Nielsen and Nock, 2011) provides a unifying framework:

e Sharma-Mittal entropy: H,, g(p) = ﬁ ((Zip(x)@)% — 1), where a > 0, o # 1,and g # 1

e Renyi (1961) entropy if degree (5) = 1
e Tsallis (1988) entropy if degree (5) = order («)
e Error entropy (probability gain; Nelson et al. (2010)) if degree (3) = 2, order (o) = oo

Generalised surprise values
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Weird and wonderful (bad) entropy functions

To further broaden the space of entropy functions considered, we first created a variety of
atomic surprise functions. From these we derived corresponding entropy functions, always
defining entropy as ) . Surprise(z) x p(x). The resulting entropy functions vary in which
entropy axioms (Csiszar, 2008) they satisfy.

'‘Bad' atomic surprise functions '‘Bad' elementwise entropies
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Simulating many strategies in many environments

e Learners based on 5 x 5 entropies in Sharma-mittal space «, 5 € [1/10,1/2,1,2,10], plus
our 5 weird and wonderful entropy functions.

e Test cases: all 25 of the 3-variable causal graphs, through 8 sequentially chosen interven-
tions. Repeated simulations 10 times each in 3 x 3 environments:

1. Spontaneous activation rates of |.2, .4, .6]
2. Causal powers of .4, .6, .§]

Generalised entropy simulations '‘Bad' entropy simulations

) — 0
© E a=1, b=1 (Shannon) B S | /@
a=Inf, b=2 (Probability gain)
5 =] /\ 5 /E/A
o oM
o / A\ o /
@
/0 - To! /g )
— g ® - g — %/ . _—
O . ] O _—
¢ o 0 o ¢
é / ﬂ/ 3 o ° —
P / > N - /
'c% o " '% 0/
®) o)
< / o =2 / //.
o M TS 4 ®_~
ﬂ / /Q
o B / 0/‘
" S - o B Central kink
/ B a=1/10 b=1/10 (Tsallis low) o N / e Early kink
S ] e a=1/10, b=1 (Renyi low) 0/ " A Late kink
o B a=10, b=10 (Tsallis high) 9 | - . ¢ 3step
e a=10, b=1 (Renyi high) S —— e o e 5step
| l l l T T T | | l l l |
1 2 3 4 5 6 7 8 0 2 4 6 8
N interventions performed N interventions performed

e Shannon entropy achieves higher accuracy than probability gain
e many entropy functions achieve similar accuracy as Shannon entropy
e but the interventions chosen vary widely:

Intervention choice type proportions (N = 18000)
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Questions:

e in which instances do different strategies strongly contradict each other?
e which properties of entropy functions are important for particular situations?
e when are particular entropy functions cognitively plausible?
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