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Abstract

The timing and order in which a set of events occur strongly in-
fluences whether people judge them to be causally related. But
what do people think particular temporal patterns of events tell
them about causal structure? And how do they integrate multi-
ple pieces of temporal evidence? We present a behavioral ex-
periment that explores human causal structure induction from
multiple temporal patterns of observations. We compare two
simple Bayesian models that make no assumptions about de-
lay lengths, assume that causes must precede their effects but
differ in whether they assume simultaneous events can also be
causally connected. We find that participants’ judgments are
in line with the model that rules out simultaneous causation.
Variants of this model that assume people update their beliefs
conservatively provide a close fit to participants’ judgments.
We discuss possible psychological bases for this conservative
belief updating and how we plan to further explore how people
learn about causal structure from time.
Keywords: causal learning; sequential learning; structure;
Bayesian modeling; conservatism; time; memory; belief up-
dating

Introduction
Hume’s (1748/1975) claim that people infer causal connec-
tions when they find temporal precedence, contiguity and
constant conjunction has largely been embraced by psy-
chology. Associative learning theories predict that, ceteris
paribus, the closer in time two events occurred, the more
likely people are to believe that they are causally related
(Shanks & Dickinson, 1987). However, much recent work
has shown that for many real world scenarios, people’s causal
judgments are influenced by their expectations about delay
length (Buehner & May, 2004; Schlottmann, 1999), and de-
lay variability (Greville & Buehner, 2010) such that shorter-
than-expected delays can also reduce causal judgments. On
the other hand, a related line of work suggests that consis-
tency of temporal order with a causal structure (over and
above specific delay length), may be an even more important
factor in how people induce causal structure (Lagnado & Slo-
man, 2002, 2004; Rottman & Keil, 2012). People appear to
draw causal conclusions based on temporal order even when
the mechanisms underlying the causal system are completely
unknown, or when temporal order contradicts other sources
of information such as covariation and the outcomes of inter-
ventions (Lagnado & Sloman, 2006). Several recent studies
also suggest that people are reluctant to endorse causal con-
nections between events which appear to occur at the same
time (Burns & McCormack, 2009), even when the causal
mechanism is plausibly instantaneous (Lagnado & Sloman,
2006; McCormack, Bramley, Frosch, Patrick, & Lagnado,
under review; McCormack, Frosch, Patrick, & Lagnado, un-
der review).

These findings suggest that causal inference and event tim-
ing are tightly coupled (Lagnado & Sloman, 2006; Rottman
& Keil, 2012; Sloman, 2005), with causal inference from
temporal information appearing to be more automatic (Mi-
chotte, 1946) and more developmentally basic (McCormack,
Frosch, et al., under review) than other modes of causal learn-
ing. However, to date there has been little work on the role of
temporal order1.

The learning problem
Here we explore the general problem of how people induce
causal structure from temporal patterns of activation. We
investigate whether people make a default assumption that
causes must precede their effects, or merely a weaker assump-
tion that causes either precede or happen at the same time as
their effects. We focus on identification of the causal struc-
ture of a simple system with two candidate cause components
A and B, and a single effect component E (Figure 2). To
keep the problem space manageable, we restrict the systems
to binary (active/inactive) components with causal relation-
ships that are generative and deterministic and where there
are no spontaneous component activations. However, delays
between causes and their effects are variable, such that the
same causal structure can generate more than a single type
of temporal activation pattern. We also restrict the evidence
to temporal patterns in which all components activate. This
means that people cannot rely on contingency information
and have to base their causal judgments on temporal order
information only (Figure 3 a).

Baseline models
In order to formalize the idea that people expect causes to pre-
cede their effects in a Bayesian framework, we created likeli-
hood functions for the seven causal structures in the problem
space. We assumed that the probability of seeing a particu-
lar temporal pattern of activations given a causal structure is
1/N, where N is the number of distinct temporal orderings
consistent with that structure (Figure 3 a). For example, pat-
tern 4 in which component A activates before component E
and B, is consistent with structure IV (B← A→ E) but in-
consistent with structure V (A← B→ E) because it is impos-
sible in this common cause structure for A to activate before
B. This approach is simple because it makes no assumptions
about the exact length of the time delays between causes and
effects but only considers the qualitative ordering in which

1An exception is Pacer and Griffiths (2012), but their work fo-
cused on induction of connections between continuously varying
variables, while we will focus here on sequences of point events.
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the different events occur. This means that, for example, the
common cause structure IV (E ← A→ B) is consistent with
the time sequences where A activates first followed by either
B then E (pattern 2), E then B (pattern 4) or E and B at the
same time (pattern 3). Whether this structure is also consis-
tent with A and B occurring at the same time followed by
E (pattern 1), depends on whether or not one assumes that
causes and effects can happen simultaneously. We formalize
two baseline models which differ in terms of whether or not
they rule out the simultaneous activation of causes and effects
(cf. Figure 3b and c).

Sequential belief updating
Real world causal learning typically takes place incremen-
tally, often over a whole lifetime, with causal beliefs evolv-
ing as new evidence is observed. We are therefore interested
in exploring how people update their beliefs as they observe
a causal system exhibiting different temporal patterns over
multiple occasions.

Our baseline Bayesian learning models yield predictions
about how people update their beliefs with increasing evi-
dence, by maintaining a probability distribution over possible
structures S , and updating this distribution using Bayes the-
orem and the likelihood function p(T |S) for each temporal
pattern T that is observed.

p(S |T ) ∝ p(T |S) · p(S) (1)

Starting from a flat prior, representing complete ignorance
about the structure of a system, we found that our two base-
line models make rich and distinct predictions about the pos-
terior distribution over causal structures given different se-
quences of temporal activation patterns (Figure 4).

Research has generally found that what people learn from
sequentially presented information is dependent on the or-
der with which information is presented (Hogarth & Ein-
horn, 1992). Existing models, such as Hogarth and Einhorn’s
(1992) belief adjustment model, mimic these phenomena and
provide workable approximations to normative judgments by
positing simple sequential updating strategies. For instance,
by repeatedly updating a point estimate about a particular hy-
pothesis to part way between a current estimate and each new
data point, Hogarth and Einhorn’s model explains primacy
effects in point estimation. Bayesian models meanwhile, typ-
ically do not predict order effects due to the time-independent
nature of Bayesian belief updating, although they can be cap-
tured by assuming some form of approximation or factor-
ization (e.g. Fernbach & Sloman, 2009; Sanborn & Silva,
2013). Sticking with the purely Bayesian framework though,
there are several ways of capturing biases and order effects in
people’s belief updates. Recency effects, in which people’s
beliefs are more strongly affected by later pieces of evidence,
can be modeled via the addition of noise to the learner’s
posterior between learning instances (Bramley, Lagnado, &
Speekenbrink, submitted; Steyvers, Tenenbaum, Wagen-
makers, & Blum, 2003). We can also model conservatism,

Figure 1: The experiment interface. Clips are shown in the
bottom left panel.

e.g. sticky or slower than expected belief updating, by adding
noise to the learner’s likelihood function (Edwards, 1968).

In the current experiment, we will explore biases in peo-
ple’s sequential causal belief updates relative to our baseline
models.

Overview of experiments
The task
To test whether one of our baseline models provides a good
description of what people infer from temporal information,
we designed an online task in which participants observe a
causal device exhibiting several patterns of activation, and
then make judgments about how they think the components
of that device are causally connected. Evidence about each
device was presented in the form of short movie clips. Each
clip simply showed the three components, A, B, and E, which
were represented by circles and arranged in a triangle (Fig-
ure 1). During each clip, all three components activated by
turning from white to gray. The activated components re-
mained gray until the end of the clip. We manipulated the
order in which components activated during each clip. Each
clip was instantiated one of the temporal patterns shown in
Figure 3a. For a single device, participants would see a se-
lection of activation patterns and be asked to make multiple
judgments about which of the candidate causal structures cap-
tures how the device works.

We opted for a relatively abstract paradigm, in which par-
ticipants are not told anything about the type of causal device
or system they are identifying. This allows us to sidestep, as
far as possible, complications due to the expectations people
may have about the prior probability of different causal struc-
tures, delay lengths and delay variability. By keeping the task
abstract we were able to focus on identifying default assump-
tions people make when they are facing a relatively new or
unknown system.
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Figure 2: Possible causal structures.
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Figure 3: a) Seven possible temporal patterns of three events A, B, and E. Likelihood functions for the temporal patterns given
the seven different causal structures with non-simultaneity assumption (b) or simultaneity assumption (c).

Possible causal structures

As discussed in the introduction, we restricted the space of
possible causal structures to seven (Figure 2), each with two
candidate causes A and B and an effect E. Participants were
instructed that any parentless components in a causal struc-
ture diagram were caused by other unobserved components
but that none of the other components would activate without
being caused to by another component. This was done to min-
imize participants’ expectations about when or why parent
components of the device might activate. Participants were
informed that structure I is conjunctive, meaning that both A
and B must activate in order for E to occur.

Eliciting judgments

In order to have a fine-grained measure of people’s beliefs,
we asked participants to distribute 100 percentage points over
the seven candidate causal structures, such that each value in-
dicated their belief that the given structure captures how the
device operates. They could not move on unless their indi-
cated answers summed to 100%. Based on these percentage
points, we get a subjective probability distribution over the
seven structures from each participant, allowing us to directly
compare their responses with the predictions of our models.

Variation in delays

We instructed participants that the delay between the acti-
vation of a cause and the activation of its effect was vari-
able even though the causal links themselves were reliable.
Thus, it was possible that the same device would exhibit dif-
ferent patterns of activation on different occasions. For ex-
ample, structure IV (B← A→ E) was compatible with both
the A−B−E temporal pattern and the A−E −B temporal
pattern, because the A→ E link can sometimes occur more
quickly than the A→ B link.

Manipulating memory demands
In order to test whether participants’ judgments are affected
by memory effects such as forgetting of earlier pieces of ev-
idence, we ran three different conditions between subjects.
In condition i) participants were unable to remind themselves
of what patterns they had previously seen. In condition ii)
the sequence of activations seen on the previous clips of the
current device was available throughout the experiment. In
condition iii) the summary time lines showed, not just the or-
der in which events had occurred, but also the exact delays
separating events.

Methods
Participants 86 participants (39 female, Mage = 35.3,
SDage = 12.3) were recruited via Amazon Mechanical Turk.
They were each paid $1 and the task took 25.0 minutes on
average (SD = 9.8). There were 25 participants in condition
i), 32 in condition ii) and 29 in condition iii).

Stimuli and model predictions
Participants saw 16 causal devices in total (Table 1). For each
device, participants were presented with four patterns of evi-
dence. They were asked to provide a first judgment after they
had seen the first three clips and were then given the chance to
update their judgments after having seen a fourth piece of evi-
dence. We selected clips such that, for half of the devices, our

Table 1: Patterns of observations (1st - 4th piece of evidence)
for the 16 different devices. Note: Clip numbers refer to the
temporal patterns in Figure 3a. The roles of components A
and B were counterbalanced (e.g. pattern 2 A-B-E becomes
pattern 5 B-A-E) and responses re-coded.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1st 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1
2nd 2 2 2 2 2 2 2 3 3 2 2 2 3 1 1 1
3rd 5 5 2 2 2 2 2 4 4 3 1 1 5 1 1 1
4th 4 2 1 2 4 5 6 3 5 4 2 6 4 1 2 3
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models predicted a strong shift in belief between the first and
the second judgment, while for the other half, little or no shift
was predicted. For example, for device 1 (Figure 4a), partic-
ipants first saw patterns 1, 2, and 5 (AB−E, A−B−E and
B−A−E) resulting in a strong prediction by both the simulta-
neous and the non-simultaneous models that participants will
favor structure I: A→ E ← B.2 Finally, participants saw pat-
tern 4 (A−E−B) which is incompatible with the (conjunc-
tive) common effect model, meaning that both models predict
a dramatic shift to structure VI (A→ E) which both models
consider to be the only structure consistent with all four clips
(Figure 4c). For four of these eight devices the same shift was
predicted by the simultaneous model as the non-simultaneous
model, for three a different shift was predicted while for the
other nine devices, the simultaneous model predicted no shift.
In no case did we use a set of clips that resulted in all of the
causal structures being ruled out.

In addition to whether each set of clips led to a large
predicted shifts between participants’ first and second judg-
ments, we also selected sets of evidence for which the most
likely structure differed depending on whether or not one
made the simultaneity assumption. Thus the simultaneous
and non-simultaneous baseline models disagreed about the
most likely structure for one or both judgments on 8 of the
16 devices (see figure 4b and d for an example in which both
judgments differ).

Procedure After reading the instructions, participants
needed to successfully answer a comprehension check ques-
tions to proceed. The order in which the devices were pre-
sented was randomized between participants. However, the
order of clips for each device was always as shown in Ta-
ble 1. The delays between activations were generated ran-
domly but the same values were used for all participants.
We varied the delay between each activation, drawing each
delay from a seeded uniform distribution between 200 and
1200 ms. The clips used in the experiment varied in total
length between 566 and 2159 ms depending on these delays
and whether there were three staggered component activation
events (patterns 2, 4, 5 and 7) or only two (patterns 1, 3 and
6). We counterbalanced two reversed presentation orders of
the seven structures shown at the top of the screen between
participants (Figure 1a).

A demo of the task can be found at bit.ly/19WamZO.

Results and discussion
Condition differences Patterns of responses in the three
memory conditions were very similar with pairwise correla-
tions of .94 between conditions i) and ii) and .92 between
conditions i) and iii). Multiple corrected one-way ANOVAs
confirmed that there were no main effects of condition on
participants’ judgments. Therefore we conclude that mem-

2Both models predict people will prefer this model to the single
link structures VI: A→ E and VII: B→ E because, by being con-
sistent with fewer temporal patterns, structure I’s likelihood is less
widely dispersed.

a) b)

c) d)

Figure 4: Baseline model predictions for devices 1 and 12
after the first three clips (a and b), and after the fourth clip (c
and d).

ory load had little effect on peoples’ judgments in this task
and collapse the data over the three conditions for subsequent
analyses.

Comparing the baseline models To assess qualitative cor-
respondence with the models, we started by checking if judg-
ments averaged over participants had the same modes as the
predictions of one or other of the baseline models. For ex-
ample, in Figure 5 we see that on average participants as-
sign the most probability mass to the same structure as the
non-simultaneous baseline model on both judgments for de-
vice 1 and 8, but diverge on the second judgment for device
12. Participants’ modal response matched that of the non-
simultaneous model 81% on the first judgment and 88% on
the second, and the simultaneous baseline model 63% of the
time on both the first and second judgments. For the tri-
als where the two models made different predictions, par-
ticipants’ gave most points to the structure predicted by the
non-simultaneous model 5/7 and 5/8 times first and second
judgments respectively, but only 1/7 and 2/8 times for the si-

Table 2: Conservatism parameter c, fit of the different models
based on RMSE, pearson’s r correlation with averaged partic-
ipant responses, and number of individuals with the highest
correlation for each model. Note: Conservative J = conserva-
tive judgment model, Conservative T = conservative through-
out model, s. = simultaneity assumption, n.s = nonsimultane-
ity assumption.

Model c RMSE Correlation (r) N highest r
Random 16.0 0 2

Baseline (s.) 18.3 0.56 5
Conservative J (s.) .15 14.7 0.58 6
Conservative T (s.) .10 14.7 0.58 21

Baseline (n.s.) 20.2 0.78 24
Conservative J (n.s.) .12 16.3 0.84 4
Conservative T (n.s.) .28 12.1 0.88 24
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(b) 8. A–B–E, 2. A–(BE), 3. A–E–B, 4. A–(BE)
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(c) 12. (AB)–E, 2. A–B–E, 3. (AB)–E, 4. B–(AE)

Figure 5: Comparison of the participants judgments with the non-simultaneous models. Devices (a) 1 and (b) 8. (c) 12.
Note: Conservative J = conservative judgment model, Conservative T = conservative throughout model, n.s = nonsimultaneity
assumption.

multaneous model (Figures 5).

For the 8 trials in which the non-simultaneous model pre-
dicted a large shift of probability between participants’ first
and second judgments, we found that in all cases, partici-
pants’ judgments shifted in the expected direction. This was
true both for the structure which became much less likely, and
for the structure which became much more likely. For exam-
ple with device 1, going from clip 3 to 4 both models pre-
dicted a shift from the common effect structure I to the singly
connected structure VI and correspondingly, mean percentage
attributions to structure I go down from 53% to 20% while at-
tributions to structure VI rise from 7.3% to 37%. In two of
the three cases where the simultaneous baseline model pre-
dicted a different shift than the non-simultaneous case, par-
ticipants’ judgments went against the simultaneous model’s
predictions. Therefore, based on modal choices and judg-
ment shifts, participants appear to be acting more in line with
the non-simultaneous baseline model (Figure 5).

Looking at the Pearson’s r correlations between the av-
erage participant judgments and model predictions (Table
2), we see that the non-simultaneous baseline model corre-
lates higher with participants’ responses than the simultane-
ous model (.78 compared to .57), again suggesting that for the
most part, participants made the non-simultaneity assumption
in their inferences.

Conservatism While the non-simultaneous baseline model
predicts participants’ modal judgments for almost all trials
and is well correlated with their overall judgments, quantita-
tively it is a poor fit. The RMSE between averaged participant
judgments and the non-simultaneous baseline model (20.2) is
actually slightly higher than for a random model that predicts
participants will divide their percentage points evenly over all

seven structures regardless of what they see (16.0, Table 2).
Looking at the graphs, we see that this is due to participants
typically being much less certain than our baseline model pre-
dicts. For example, the prediction for structure VI for device
1 was that it should rise to 100% on judgment 2, but on av-
erage participants redistribute barely half of the probability
mass from structure I to VI (Figure 5a).

Having found no between-condition differences as evi-
dence that forgetting could be driving participants’ deviations
from baseline predictions, another possible explanation for
their divergence is that they might be conservative in their
belief updating.

This might be due to participants’ first judgments acting
as an anchor leading them to shift less dramatically than a
Bayesian model predicts when they see clip four. Alterna-
tively, people might be conservative in their belief updating
throughout the task due to more general skepticism or uncer-
tainty about the evidence. For example, some participants
may have suspected that components could sometimes ac-
tivate spontaneously, or that a cause could generate its ef-
fect even when inactive. Alternatively, conservative updat-
ing could be a more general heuristic strategy for avoiding
overly rapidly changes in belief as it is generally hard to be
confident that evidence in the real world is perfectly reliable.
Causal knowledge is widely thought to play a central role in
guiding and constraining our everyday inferences (e.g. allow-
ing predictions or diagnoses to follow the observation of the
states of variables; Pearl, 2000). As such, it seems sensible
to expect causal beliefs to be slower to change in the light of
new evidence than the other less entrenched beliefs that they
support.

In a Bayesian framework we can formalize conservatism
by adding some unbiased noise into the likelihood functions.
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If participants are generally conservative, we would expect
a model that incorporates noise into the likelihoods for each
observation to better explain participants judgments.

We created noisy likelihoods by mixing the likelihoods in
Figure 3 with uniform likelihoods (with 1/7 for each pattern
of data for each structure) to a degree controlled by a parame-
ter c (i.e Lconservative = (1−c)×Lbaseline+c×Luniform
where L stands for likelihood).

Fitting c to the averaged data by maximizing r, we aug-
mented both baseline models with conservatism. For conser-
vatism after judgment (CJ), it was applied only once on final
update, after the first judgment. For conservatism throughout
(CT), it was applied on all four belief updates. The results
of these model fits are in Table 2. Note that CJ makes the
same predictions for the first judgment as the baseline model
but does not adjust this judgment as much after clip four while
CT makes different predictions for both judgments (Figure 5).
In particular, for the CT model with the non-simultaneity as-
sumption there is a marked reduction in error, from 16.0 to
12.1, and increase in correlation from .78 to .88. The CJ
model is also an improvement over the baseline, but not to the
same extent. This suggests that participants were consistently
conservative throughout the task, rather than only after having
made their explicit judgment, although the higher parameter
estimate for CJ (.28 compared to .12) suggests that conser-
vatism may have been greater following the initial judgment.

Remaining variance While the Bayesian method of con-
servatism captures participants’ judgments well, there is still
additional variance. If participants updated their beliefs in
some approximate, non-Bayesian, manner then their devia-
tions may relate to the order in which they saw the clips.
We experimented with non-Bayesian methods of modeling
sticky belief updating while retaining the idea that people
base their judgments on these simple likelihoods. As an
example, we found that if we assumed that participants be-
liefs moved only halfway between their prior and the poste-
rior implied by the non-simultaneity likelihood of each new
clip (posteriorsub jective = mean(prior, posteriorob jective)) we
achieved an even better fit with the data, with an RMSE of
just 7.2 percentage points and correlation of r = .91.

While this approach is not fully in the spirit of the pure
Bayesian perspective, it does produce primacy effects, which
we might expect given existing research, and provides a very
tight fit with the data. This is suggestive of the idea that, while
people are broadly consistent with Bayesian predictions, their
causal beliefs might be updated in some non-Bayesian, se-
quentially biased, manner. We will explore what heuristic
updating strategies people may use in a causal context in fu-
ture work.

An additional potential source of divergence is that partic-
ipants may have made some delay-expectation-related infer-
ences like those found by Buehner et al (Buehner & May,
2004), despite having no task framing to work with. For ex-
ample, participants may have been less inclined to endorse a
A→E←B or B←A→E to the extent that A and B occurred

at different times (despite the instructions that delay length
was variable in this case). In ongoing work we are looking
into more fine-grained likelihood functions that might cap-
ture assumptions about homogeneity of delays at the level of
individual causal components and of whole systems.

Conclusions
In this paper we explored the dynamics of human causal
learning from temporal order information. We found that rich
predictions resulted from very minimal assumptions about
temporal precedence of causes and that these predictions
were borne out by participants’ judgments in an online exper-
iment. In particular, we found evidence that people typically
assume that causes take time to cause their effects, and infer
causal structure from order information in a broadly Bayesian
but conservative way. Remaining deviations from this model
suggest that people may be performing some form of approx-
imate belief adjustment procedure or bringing in expectations
about delay lengths.
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