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Interacting with a system is key to uncovering its causal structure. A computational framework for
interventional causal learning has been developed over the last decade, but how real causal learners might
achieve or approximate the computations entailed by this framework is still poorly understood. Here we
describe an interactive computer task in which participants were incentivized to learn the structure of
probabilistic causal systems through free selection of multiple interventions. We develop models of
participants’ intervention choices and online structure judgments, using expected utility gain, probability
gain, and information gain and introducing plausible memory and processing constraints. We find that
successful participants are best described by a model that acts to maximize information (rather than
expected score or probability of being correct); that forgets much of the evidence received in earlier trials;
but that mitigates this by being conservative, preferring structures consistent with earlier stated beliefs.
We explore 2 heuristics that partly explain how participants might be approximating these models
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By representing causal relationships, people are able to predict,
control, and reason about their environment (Pearl, 2000; Sloman,
2005; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). A large
body of work in psychology has investigated how and when people
infer these causal relationships from data (Cheng, 1997; Griffiths
& Tenenbaum, 2009; Shanks, 1995; Waldmann, 2000; Waldmann
& Holyoak, 1992). However, people are not passive data crunch-
ers; they are active embodied agents who continually interact with
and manipulate their proximal environment and thus partially
control their data stream. This ability to self-direct and intervene
on the environment makes it possible for people to efficiently
bootstrap their own learning. This is known as active learning.

The idea that self-direction is crucial to learning is well estab-
lished in education and frequently noted in developmental psy-
chology, where self-directed “play” is seen as vital to healthy
development (e.g., Bruner, Jolly, & Sylva, 1976; Piaget, 1930/
2001). Additionally, recent work in cognitive science has shown
that people learn categories and spatial concepts more quickly by
actively selecting informative samples (e.g., Gureckis & Markant,
2009, 2012; Markant & Gureckis, 2010). However, it is in iden-
tifying causal structure that taking control of one’s data stream
becomes really essential (Pearl, 2000; Woodward, 2003). As an
example, imagine you are interested in learning about the relation-
ship between two variables A and B. Concretely, suppose you are
a medical researcher, A is the presence of some amoeba in the
stomach, and B is the existence of damage to the stomach lining.
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Identifying a correlation between of A and B tells you that the two
are likely to be causally related but does not tell you in what way.
Perhaps this amoeba causes stomach lining damage; perhaps stom-
ach lining damage allows the amoeba to grow; or perhaps they
share some other common cause. In the absence of available
temporal or spatial cues,' the direction of causal connections can
only be established by performing active interventions (experi-
mental manipulations) of the variables. One can intervene, manip-
ulating A and checking if this results in a change in B (or manip-
ulating B and checking if this results in a change in A). In this
example one might manipulate A by adding the amoeba to a
sample of stomach wall tissue to see it becomes damaged or
manipulate B by making cuts in a sample of stomach lining tissue
to see if this results in growth of the amoeba. If manipulating A
changes B then this is evidence that A is a cause of B. Thus, ability
to intervene provides active learners with a privileged route for
obtaining causal information.

Several studies have found that people benefit from the ability to
perform interventions during causal learning (Coenen, Rehder, &
Gureckis, 2014; Lagnado & Sloman, 2002, 2006, 2004; Schulz,
2001; Sobel, 2003; Sobel & Kushnir, 2006; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003). However, only Steyvers et al. and
Coenen et al.’s studies explore how people select what intervention
to perform, and both do so only for the case of a single intervention
on a single variable in a semi-deterministic context. In contrast,

"It is true that for many everyday inferences there are strong spatial or
temporal cues to causal structure. But, in other situations these cues are
noisy, uninformative, or unavailable. Many systems propagate too fast to
permit observation of time ordering of component activations (e.g., elec-
trical systems), or they have hidden mechanisms (e.g., biological systems,
psychological processes) or noisy/delayed presentation of variable values
(Lagnado & Sloman, 2006). In others (e.g., crime scene investigation),
observations come after the relevant causal process has finished. Addition-
ally, people must be able to learn when spatial and temporal cues are
reliable (Griffiths & Tenenbaum, 2009).
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much real-world causal learning is probabilistic and incremental,
taking place gradually over many instances. It has not yet been
explored in what ways sequential active causal learning might be
shaped by cognitive constraints on memory and processing or
whether learners can plan ahead when choosing interventions.

Additionally, it has been shown that single-variable interven-
tions are not sufficient to discriminate all possible causal structures
(Eberhardt, Glymour, & Scheines, 2005; see also Figure 2 for an
example). Interventions that simultaneously control for potential
confounds to isolate a particular putative cause are cornerstones of
scientific testing (Cartwright, 1989) and are key to scientific think-
ing (Kuhn & Dean, 2005). However, the only interventional learn-
ing study that allowed participants to perform multihold interven-
tions was Sobel and Kushnir (2006), and this study did not analyze
whether participants used these interventions effectively.

A final point is that no previous studies have explicitly incen-
tivized causal learners. There is ambiguity in any assessment of
intervention choices based on comparison to a correct or optimal
behavior according to a single criterion value. This is because one
cannot assume that the participants’ goal was to maximize the
quantity used to drive the analyses. In other areas of active learning
research, researchers have run experiments to discriminate be-
tween potential objective functions that might underpin human
active learning (e.g., Baron, Beattie, & Hershey, 1988; Gureckis &
Markant, 2009; Meder & Nelson, 2012; Nelson, 2005; Nelson,
McKenzie, Cottrell, & Sejnowski, 2010), but this is yet to be
explored in the domain of causal learning.

Clearly, there are many aspects of active causal learning that call
out for further exploration. Therefore, here we present two exper-
iments and modeling that extend the existing work along several
dimensions. In particular we explore

1.  Whether people can choose and learn from interventions
effectively in a fully probabilistic, abstract, and uncon-
strained environment.

2. To what extent people make effective use of complex
“controlling” interventions as well as simple, single-
variable fixes.

3. What objective function best explains participants’ inter-
vention choices: Do they act to maximize their expected
utility, to maximize their probability of being correct, or
to minimize their uncertainty?

4.  Whether people choose interventions to learn in a step-
wise, “greedy” way or whether there is evidence they can
plan further ahead.

5. How people’s causal beliefs evolve over a sequence of
interventions. Is sequential causal learning biased by
cognitive constraints such as forgetting or conservatism?

6. Whether people’s interventions and causal judgments can
be captured by simple heuristics.

The first two points can be addressed though standard analyses
of participants’ performances in various causal learning tasks.
However, the latter questions lend themselves to more focused
analyses of the dynamics of participants’ intervention selections.

Therefore, in the second half of the paper we will explore these
questions by fitting a range of intervention and causal-judgment
models directly to the actions and structure judgments made by
participants in our experiments. We will compare different learn-
ing functions (utility gain, probability gain, and information gain);
compare greedy learning models to models that plan ahead; and
assess the influence of potential cognitive constraints (forgetting
and conservatism). We will also explore the extent to which
participants’ behavior can be similarly captured by simple heuris-
tic models as by more computationally complex Bayesian models.

Formal Framework

Causal Bayesian Networks

As have the authors of many recent treatments of causality in
psychology, we take causal Bayesian networks (Pearl, 2000;
Sprites, Glymour, & Scheines, 1993) as our starting point. We do
not describe these in detail for space reasons, but see Heckerman
(1998) for a tutorial on learning and using Bayesian networks for
inference and Holyoak and Cheng (2011) for a review of recent
applications of causal Bayesian networks in psychology.

Briefly, a Bayesian network (Pearl, 2000; Sprites et al., 1993) is
a parameterized directed acyclic graph (see Figure 1). The nodes in
the graph represent some variables of interest, and the directed
links represent dependencies. Bayesian networks are defined by
the Markov condition, which states that each node is independent
of all of its nondescendants given its parents. Descendants are
nodes that you can reach by following arrows from the current
node, and parents are the nodes with arrows leading to the current
node.

To capture causal structure, we interpret the directed links as
causal connections going from cause to effect. In general, the
causal variables can take any number of states or even be contin-
uous, and the conditional probabilities of states of effect variables
given cause variables can also take any arbitrary form. However,
here we restrict ourselves to binary (present/absent) variables and
causal connections that raise the probability of their effects. Fol-
lowing Cheng’s (1997) power PC formalism and the noisy-OR
combination function (Pearl, 1988), we assume the probability of
an effect e € [1 = Present, 0 = Absent] given the presence of one
or more causes ¢; € [l = Present, 0 = Absent] and some
probability s of e spontaneously activating? is given by

ple=1lc;=1,...,c,=)=1-(1-9]] 1 — power, )
= ~

ey
where the power of each cause is defined as its probability of
bringing about the effect in the absence of any other causes:
ple=1lc=1)—ple=1lc=0)

= 2
powere 1= ple=11c=0) @

This captures the idea that the more (independently acting) causes
are present, the more likely the effect.

2 One can think of s as the combined power of the potential causes of e
that are outside of the scope of the causal network. This means that even
if there are no causes of effect e active in the network, there is still some
chance of e occurring.
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Figure 1. 'Two possible structures (a) A — B — C and (b) A <~ B — C. I. Intervening on B breaks any
incoming causal links (dotted in gray). 2. Assuming the goal is to distinguish between these two structures,
intervening on B is informative. Assuming binary variables and generative causal links, if we clamp B on (+

symbol) and then observe that C also turns on (highlighted in green [gray]) but A does not, then we have evidence
for structure (a) A — B — C. If A also comes on, this is evidence for structure (b) A < B — C. See the online

article for the color version of the figure.

To some extent, the causal structure likely to connect a set of
variables can be identified through passive observation. Given data
D and a prior over a set G of causal Bayesian network structures,
one can compute the posterior probability of each network struc-
ture using known network parameters or by integrating over pa-
rameterizations 0. In the latter case, the posterior probability of a
graph g € G is given by

[ pD15.0)p(01 9)p(g)d0
S eq [, p(D1g . 0)p(61 8 )p(g )0

However, a large amount of data compared to the number of
possible causal networks is typically required to achieve this
(Griffiths & Tenenbaum, 2009), and the number of possible net-
works rapidly becomes very large (25 for 3 variables, 543 for 4
variables, 29,281 for 5 variables, etc.), making learning extremely
costly. Worse, without known parameters, many networks cannot
be distinguished purely on the basis of covariational information
(Pearl, 2000). Covariational information only allows a learner to
identify that the network falls in a subset of possible causal
networks, known as a Markov equivalence class, but not decide
which network out of this subset is correct. This suggests that we
must look beyond the calculus of observational learning to explain
people’s remarkable ability to learn the causal structure of their
environment (Griffiths & Tenenbaum, 2009).

pgID) = 3)

Interventions

The information provided by interventions is qualitatively
different from that provided by observations. This is because
intervened-on variables no longer tell you anything about their
normal causes. This makes intuitive sense (i.e., turning your
burglar alarm on tells you nothing about whether there has been
a burglary, but attempting to break into your house may help
you find out if your burglar alarm is working). In the causal
Bayesian network framework, interventions can be modeled as
graph surgery (Pearl, 2000; see Figure 1). Any links going to an
intervened-on variable are temporarily severed or removed.
Then, the variable is set, or clamped, to a particular value (i.e.,

clamped on or off in the binary case). The resulting values of
the unclamped variables are then observed and inference is
performed as normal. Intervening thus allows the learner to
sidestep Markov equivalence issues and reduces the complexity
of learning by reducing the number of variables that must be
marginalized over with each new datum. To distinguish certain
structures, one must clamp multiple variables at a time, as we
do when controlling for potential confounds in an experiment.
This is the case whenever you want to rule out direct connec-
tions between variables that you know are indirectly connected
in a chain, as in Figure 2. With single-variable interventions
these structures can only be distinguished on rare and lucky
occasions (e.g., if the middle link in the chain fails but the direct
link to the end variable still works). If the causal connections
are perfectly reliable, a double hold intervention (where the
middle link in the chain is clamped off) is necessary. Because
the number of possible direct links increases at a rate of
(N=1)(N—2)
2
controlled interventions for causal learning about realistically
complex problems is likely to be large. Eberhardt et al. (2005)
show that, to identify any causal structure connecting N vari-
ables, at most log,(N) + 1 idealized experiments are sufficient,
provided any subset of variables can be clamped in each ex-
periment. This proof assumes that each experiment is suffi-
ciently highly powered (e.g., a random controlled trial or ex-
perimental manipulation with sufficient sample size) to reliably
rule various structures out. However, in this paper we are
interested in single-sample experiments (i.e., those typically
achievable by real-world learners interacting with a causal
system). Therefore, unless causal links are deterministic, a
larger number of interventions are required to identify the
correct causal structure with a high probability; at most,
log,(N) + 1 different types of intervention will be sufficient.

, where N is the length of the chain, the need for

Quantifying Interventions

How can we quantify how useful an intervention is to a learner?
Intuitively, good interventions provide evidence about aspects of
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To distinguish (a) A - B — C from (b) A - B — C, A — C, you can manipulate A while
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Figure 2.
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simultaneously holding B constant. 1. This is achieved by clamping A on (+ symbol) and clamping B off
(— symbol). 2. Then, if C still activates (highlighted in green [gray]), this is evidence for the second, fully
connected structure. See the online article for the color version of the figure.

the structure of a causal system about which the learner is currently
uncertain. This means that an intervention’s value is relative to the
learner’s current uncertainty, as captured by a prior probability
distribution over possible causal structures. Additionally, useful-
ness is necessarily relative to some goal, so we must also have a
conception about what the learner is aiming to gain from an
intervention. Finally, the effect of an intervention depends on its
outcome, which is necessarily unknown at the time of its selection.
Therefore, we must consider the expected usefulness of an inter-
vention by summing or integrating over its possible outcomes and
their likelihoods.

Mathematically, at a time point ¢, the marginal probability of
each possible outcome o € O of an intervention ¢ € Q and prior
distribution over graphs p,(g)* is given by

plolq)= 2, p(olq.g)pg) )
gEG

The posterior probability distribution over graphs, given an
intervention—outcome pair, is then

p(o/lq,, 8)p8)
{81q,0) = 3)
psiane Eg'GGp(Otht’g,)pt(g’)

These posteriors can be used to compute any desired summary
values V,(Glo,, q,). For discrete outcomes, the expected value of an
intervention is the sum of these values weighted by the probabil-
ities of the different outcomes

E,[V(Glo,q)] = gb ViGlo,qplolg). (6)

An optimal intervention ¢;€Q can then be defined as the inter-
vention for which the expected value is maximal

g; = arg max E,[V(Glo,q)]. 7
q€Q0

Choosing queries or experiments that will, in expectancy, max-
imize some sensible value of one’s posterior is a cornerstone of
Bayesian optimal experimental design and decision theory (Good,
1950; Lindley, 1956) but has been little explored in the context of
interventional causal learning. Three commonly used measures in
the active learning literature are (expected) utility gain (Gureckis
& Markant, 2009; Meder & Nelson, 2012), probability gain

(Baron, 2005), and information gain (Shannon, 2001; Steyvers et
al., 2003; see Figure 3).

Utility gain. If you know how valuable correctly identifying
all or part of the true causal system is, then the goal of your
interventions is to get you to a state of knowledge about the true
graph that is worth more to you than the one you were in before.
Mathematically, this means maximization of your expectancy
about your post-outcome, post-classification expected utility
E,[U(G | 4, 0)].

If each potential graph judgment g has a utility given that the
true graph is g’, we can capture the value of any judgment by some
reward function R (see Figure 3 for a simple example that also
reflects the utilities of causal judgments in these experiments).
Assuming one will always choose the causal structure with the
highest expected reward, the utility gain, or U(G)gy;,, of an inter-
vention’s outcome is the maximum over expected utilities of the
possible judgments given the posterior p,(g’1¢,0) minus the max-
imum for the prior p,(g’):

UAG1q,0)guin = max >, R(g.8")pg" 14,0
8EG g'EG

— max

R(g, 8" )pAg") (®)
SEG g'EG

An optimal intervention is defined as the intervention that maxi-
mizes the expected utility gain (i.e., replacing V by U in Equations
6 and 7).

Probability gain. Although maximizing expected utility can
be seen as the ultimate goal of intervening, often a useful proxy is
to maximize your expected probability of being correct. Under
many normal circumstances, choosing the most probable option
will correspond to choosing the option that maximizes your ex-
pected utility (Baron et al., 1988); however, in terms of favoring
one potential posterior distribution over another, the two values are
more likely to differ depending on the reward function (see Figure

3 Likelihoods p(olg, g) can be calculated using the known causal powers
of the variables, or replaced with an integration over parameter values:
Jkp(olg, g, H)p(Blg)db in the general case.
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Figure 3. An example of differences in evaluation of posterior distributions with expected utility, probability
correct, and uncertainty. (a) If the learner is paid one point per correctly identified connection then misclassifying
structure i [A — B, A — B, B — (] as structure ii [A — B, A — C] is less costly than misclassifying it as iii
[A — C, C — B], because structures i and ii are more similar. (b) This makes Posterior 1 the most valuable in
terms of maximizing expected payout. Posterior 2 has the highest probability of a completely correct classifi-
cation, but uncertainty across the three structures is lowest overall in Posterior 3. U(G) = utility gain; $(G) =
probability gain; H(G) = information gain.
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3). Assuming you will choose the causal structure that is most
probable, the probability gain, or ®(G) can be written as

gain’

D(G1q, 0)gyin = max p(glq,0) — max p(g) ©)
gECG gEG
An optimal intervention is defined as the intervention that maxi-
mizes the expected probability gain (i.e., replacing V by @ in
Equation 6 and 7).

Information gain. Another possible option for evaluating in-
terventions comes from Shannon entropy. Shannon entropy (Shan-
non, 2001) is a measure of the overall uncertainty implied by a
probability distribution. It is largest for a uniform distribution and
drops toward zero as that distribution becomes more peaked. We
can call reduction in Shannon entropy information gain (Lindley,
1956) and use this as a way to measure the extent to which a
posterior implies a greater degree of certainty across all hypothe-
ses, rather than just improvement in one’s post-decision utility or
probability of making a correct classification. Information gain, or
H(G) is given by

gain?

H(G 1, 0)gqin = [— ;Gp,(gnogzp,(g)]
g

- [f > pielq, 0)logyp (gl g, o)] (10)
gEG

An information-gain optimal intervention is defined as the inter-
vention that maximizes the expected information gain (i.e., replac-
ing V by H in Equation 6 and 7).

How do the measures differ? The extent to which these
measures predict different intervention choices is one topic of
investigation in this paper. However, as a starting point we can
consider what types of posterior distribution they favor (see Figure
3). In the tasks we investigate here, people are rewarded according
to how accurate their causal judgment is (e.g., how many of the
causal connections and absences they correctly identify). This
means that, according to expected utility, being nearly right is
better than being completely wrong. Accordingly, we can expect
that utility gain will favor interventions that divide the space of
likely models into subsets of similar models rather than subsets of
more diverse ones (see Figure 3b, No. 1). Probability gain is only
concerned with interventions likely to raise the probability of the
most likely hypothesis and does not care about similarity or
overlap between hypotheses, or whether uncertainty between the
various less probable options is reduced. Thus, we expect proba-
bility gain to favor interventions that are targeted toward confirm-
ing or disconfirming the current leading hypothesis. In contrast,
information gain concerns the reduction in uncertainty over all
hypotheses. It will favor interventions that are expected to make a
large difference to the spread of probability across the less prob-
able networks, even when this will not pay off immediately for the
learner in terms of increasing utility or probability of a correct
classification.

In support of the idea that probability gain might drive human
active information search, Nelson, McKenzie, Cottrell, and Se-
jnowski (2010) has found participants’ queries in a one-shot active
classification task to be a closer match to probability gain than
information gain. On the other hand, Baron et al.’s (1988) studies
suggest that people will often select the question that has the
higher information gain even if, for all possible answers, it will not
change their resulting decision. There is also some recent evidence

that people pick queries that are efficient in terms of information
gain rather than utility gain in other areas of active learning
(Gureckis & Markant, 2009; Meier & Blair, 2013). Steyvers et al.
(2003) used information gain to quantify the intervention chosen
by participants in their task, but they did not compare this with
other measures. For these reasons, when analyzing our tasks we
will consider utility gain, probability gain, and information gain
alongside one another, asking to what extent the measures imply
distinct patterns of interventions, and to what extent people’s
active causal learning choices appear to be driven by one or other
measure.

Greedy or global optimization? A final issue is that, when
learning continues over multiple instances, greedily choosing in-
terventions that are expected to obtain the best results at the next
time point (whether in terms of information, highest posterior
probability, or expected utility) is not guaranteed to be optimal in
the long run. There may be interventions that are not expected to
give good results immediately but that provide the best results later
on when paired with other interventions. To be truly optimal, a
learner should treat each learning instance as a step in a Markov
decision process (Puterman, 2009) and look many steps ahead,
always selecting the intervention that is the first step in the se-
quence of interventions that leads to the greatest expected final or
total utility (assuming the learner will maximize on all future
interventions). However, computing expectancies over multiple
hypotheses and interventions when each intervention has many
possible outcomes is computationally intractable (Hyafil & Rivest,
1976) for all but the smallest number of variables and most
constrained hypothesis spaces, dooming any search for strict op-
timality in the general case. It is an open question, which we will
explore here, whether people can think more than one step ahead
when planning interventions.

Experiment 1

Method

Participants. Seventy-nine participants from Mechanical
Turk completed Experiment 1. They were paid between $1 and $4
(M = $2.80), depending on performance.*

Design and procedure. To test people’s ability to learn causal
structure through intervention, we designed an interactive
computer-based active learning task in Flash (see Figure 4; also
see www.ucl.ac.uk/lagnado-lab/neil_bramley for a demo). In the
task, participants had to use interventions to find and mark the
causal connections in several probabilistic causal systems.

Participants completed one practice problem and five test prob-
lems. The practice problem was randomly chosen from the five test
problems. The test problems were presented once each, in a
randomized order. Participants performed 12 tests per problem as
described below before finalizing their structure judgment and
receiving a score.

For each problem, participants were faced with three filled gray
circles, set against a white background. They were trained that

* The number of participants was purely dependent on our experimental
budget of $300. Unfortunately, age and gender were not properly stored for
these participants.
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Test Result

Test 1 of 12
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Figure 4. The procedure for a problem. 1. Choosing an intervention. 2. Observing the result. 3. Updating causal
links. After 12 trials, 4. Getting feedback and a score for the chosen graph. See the online article for the color

version of the figure.

these were nodes and that the nodes made up a causal system of
binary variables, but they were not given any further cover story.
Initially all of the nodes were inactive, but when participants
performed a test then some or all of the nodes could temporarily
activate. An active node glowed green and wobbled from side to
side, while an inactive one remained gray. For each structure
participants would perform multiple tests before endorsing a
causal structure and moving on to the next problem. The running
score, test number, and problem number were displayed across the
top of the screen during testing. The location of nodes A, B and C
were randomized, and the nodes were not labeled.

Each test had three main stages (see Figure 4).

1. First participants would select what intervention to perform.
They could clamp between 0 and 3 of the nodes either to active or
inactive. Clicking once on a node clamped it to active (denoted by
a plus symbol), and clicking again clamped it to inactive (denoted
by a minus symbol). Clicking a third time unclamped the node
again. A pointing hand appeared next to clamped nodes to make it
clear that they had been fixed by the participant.

2. Once the participant was happy with the intervention they had
selected, he would press “Test” and observe the outcome of their
test. The outcome would consist of 0-3 of the nodes activating.
Whether a node activated on a given trial depended on the hidden
causal connections and the choice of intervention. Participants
were trained that nodes activated by themselves with a probability
of .1 (unless they had been clamped, in which case they would
always take the state they had been clamped in). They were also

trained that causal links worked 80% of the time.” Therefore,
clamping a node to active tended to cause any children of that node
to activate, and this would tend to propagate to (unclamped)
descendants. The noise in the system meant that sometimes there
were false positives, where nodes activated without being caused
by any of the other nodes, and false negatives, where causal links
sometimes failed to work. The pattern of data seen by a participant
over the task was thus a partly random function of the participant’s
intervention choices.

3. After each test there was a drawing phase in which partici-
pants registered their best guess thus far as to the causal connec-
tions between the nodes. Initially there was a question mark
between each pair of nodes, indicating that no causal link had been
marked there yet. Clicking on these question marks during the
drawing phase would remove them and cycle through the options
no link, clockwise link, anticlockwise link, back to no link. The
initial direction of each link (clockwise or anticlockwise) was
randomized. Participants were not forced to mark or update links
until after the final test but were invited to mark as they went along
as a memory aid. This approach was used to avoid forcing partic-
ipants to make specific judgments before they had seen enough

3 Concretely, they had a causal power of.8. Combining causal power

with the spontaneous activation rate, a node with one active cause had a
1 — (1 —.1)(1 —.8) = .82 probability of activating.
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information to make an informed judgment and to maximize our
record of their evolving judgment during the task.

4. Participants performed 12 tests on each problem. After their
last test, they were prompted to finalize their choice for the causal
structure (i.e., they had to choose no link, clockwise link, or
anticlockwise link for all three pairs of nodes, leaving no question
marks). Once they had done this they were given feedback as to the
correct causal structure and received one point for each correctly
identified link (see Figure 4). There were three node pairs per
problem (A-B, A-C, and B-C) and three options (no-link, clock-
wise link, anticlockwise link) per node pair. This means that
chance-level performance was 1 correct link per problem, or ~5
points over the five problems, while an ideal learner could ap-
proach 15 points. At the end of the task participants received $1
plus 20 cents per correctly identified link, leading to a maximum
payment of $4.

Before starting the practice round, participants completed a
comprehensive and interactive instructions section designed to
familiarize them with the spontaneous activation rate, the causal
power of the nodes, the role of the different interventions, and the
aim of the task (see demo at www.ucl.ac.uk/lagnado-lab/neil
bramley). To train participants on the causal power of these con-
nections, we presented them with a page with five pairs of nodes.
The left node of each pair was clamped on, and it was revealed that
there was a causal connection from each left node to each right
hand (unclamped) node. Participants were made to test these
networks at least 4 times, finding that an average of 4/5 of the
unclamped nodes would activate. The outcomes of their first
three tests were fixed to reflect this probability, and thereafter the
outcomes were generated probabilistically. Similarly, for the rate
of spontaneous activations, participants were made to perform at

N o ©

Score out of 15

Exp 2a - Info button

least four tests on a page full of 10 unclamped and unconnected
nodes, where an average of 1/10 of these would activate on each
test. In addition to this experience-based training, participants were
told the probabilities explicitly. Before starting the task they had to
answer four multiple choice questions checking they had under-
stood: The goal of the task (e.g., how to win money); The role of
clamping variables on and the role of clamping them off; and The
probabilistic nature of the networks. If the participant got less than
3 of 4 questions correct they were sent back to the beginning of the
instructions.

Results

Participants identified an average of 9.0 out of 15 (SD = 4.1)
causal links and got 34% of the models completely right. This is
well above the chance level of 5 out of 15 correct links (and 3.7%
models correct), #78) = 8.60, p < .0001. However, the distribu-
tion of performance appears somewhat bimodal with one mode at
chance and the other near ceiling (see Figure 5), suggesting that
some participants were not able to solve the task while others did
very well. This bimodality is confirmed by a dip test (Hartigan &
Hartigan, 1985), D = 0.09, p < .0001. There was no effect of
problem order on performance, F(1, 394) = 0.06, > = 0, p = .81,
nor did participants perform better on the problem they faced as
their practice trial and when they faced it again as a test problem,
#(110) = —1.12, p = .26. Participants did not overconnect or
underconnect their final causal structures, on average opting for
no-link for 30% of node pairs, which was very close to the true
percentage of 33%.

Participants were about equally accurate on the different struc-
tures, with slightly lower scores for the chain, common cause, and

Exp 2b - Info button + summary
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Figure 5. Histogram of scores in Experiment (Exp) 1 and Experiments 2a and 2b. There were 15 points
available in total (identifying all 15 connection-spaces correctly), and one could expect to get an average of 5
of these right by guessing. See the online article for the color version of the figure.
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fully connected structures than for the common effect or singly
connected, but there was no main effect of problem on score, F(4,
390) = 0.87, n2 = .01, p = .48. However, looking at modal
structure judgment errors, one error stands out dramatically: 18
participants mistook the chain [A — B, B — (] for the [A — B,
A — C, B — (] fully connected structure. This was almost as
many as those participants who correctly identified the structure
(see Table 1).

Experiment 2

Before Experiment 1 is analyzed further, an immediate question
is why there was so much variance in participants’ performance.
One explanation for this could be that there are important individ-
ual differences between participants that strongly affected their
ability to learn successfully. Steyvers et al.’s (2003) modeling
suggested that people’s ability to remember evidence from multi-
ple past trials may be a critical psychological bottleneck for active
causal learning. One way to check if poor performance stems from
an inability to remember past tests is to provide participants with
a history of their past interventions and their outcomes and assess
whether this leads to better and more consistent causal learning.
However, another, perhaps simpler explanation for the variance is
that some participants were confused about what to do and so
responded randomly for all or much of the experiment.

To test both of these explanations, we ran another experiment
using the same task as in Experiment 1 but with two additions. In
Experiment 2a we provided an information button, which would
bring up a text box reminding them about what they were supposed
to do at that stage of the task. In Experiment 2b, participants were
still provided with this information button, but in addition they
were provided with a summary of all their past tests and their
outcomes for the current problem. These were shown in a 4 X 3
grid to the left of the screen. After each test a new cell would be
filled with a picture showing the causal system, the interventions
selected (marked with plus and minus symbols as in the main task),
and the nodes that activated (shown in green [dark gray] as in the
main task; see Figure 6).

Method

Participants. Sixty additional Mechanical Turk participants
aged 18 to 64 (M = 31.4 years, SD = 11.2) completed experiment

2. Once again, participants were paid between $1 and $4 (M =
$3.32, SD = .65).

Design and procedure. The procedure was exactly as in
Experiment 1, except that now half of the participants were ran-
domly assigned to Experiment 2a (info button only) and the other
to Experiment 2b (info button + summary).

Results

On average, judgment accuracy in Experiment 2 was consider-
ably higher than in Experiment 1, #(136.7) = 4.2608, p < .0001.
Participants in Condition 2a (info button only) scored significantly
higher at 11.1 (out of 15) correct links (SD = 3.5) than those in
Experiment 1, #(60.1) = 2.7, p = .009, while participants in
Condition 2b (info button + summary) were slightly higher at
12.13 (SD = 2.9), again significantly higher than in Experiment 1,
1(74.2) = 4.5, p < .0001. However, the improvement from 2a to 2b
was not significant, #(55.7) = 1.238, p = .22. Inspecting Figure 5,
we see that the number of participants performing close to chance
is greatly reduced in both Experiment 2 conditions compared to
Experiment 1, accounting for this difference in average perfor-
mance.

These differences suggest that many of the poorer performers in
Experiment 1 were simply confused about the task rather than
being particularly poor at remembering evidence from past trials.
However, scores were so high in Experiment 2 that failure to detect
a performance-level difference between conditions may be partly
due to a ceiling effect. In line with this, we see that participants in
Experiment 2b (info button + summary) were significantly faster
at completing the task, at 18.4 min (SD = 8.1), than were those in
the Experiment 2a (info button only condition), at 24.3 min (SD =
12.1), #(50.6) = 2.26, p = .03. This suggests that the summary
made a difference in terms of the effort or difficulty of at least
some aspects of the task.

As in Experiment 1, there was no main effect of causal network
type on performance in Experiment 2, F(4, 295) = 0.64, 1> =
.008, p = .63, nor were there any significant interactions be-
tween performance on the different structures and whether
participants saw summary information (all ps > .05). However,
as in Experiment 1, we found that participants were very likely
to add a direct A — C connection for the chain structure (see
Figure 7 and Table 1).

Table 1

The Three Most Frequent Causal Judgment Errors for Experiments 1, 2a, and 2b

Experiment True structure N correct Mistaken for N error
1 chain* — 58— ¢ 20 (25%) fully connected* —~# =~ ¢4 =€l 18 (23%)
1 chain!* =~ 8 — ¢l 20 (25%) common cause!® <4 = ¢! 7 (9%)
1 fully connected”* —# =~ ¢4 =€l 26 (35%) chaint —~ 8 — ¢l 7 (9%)
2a chain't =~ # =~ ¢l 12 (40%) fully connected!* = # =~ &4 ¢l 12 (40%)
2a common effect!t &< ¢! 17 (56%) fully connected!© — 4 — 8 € = 5l 3 (9%)
2a common cause!? <4 = €I 15 (50%) fully connected!c = # — 4. € = Al 3 (9%)
2b chain* =8~ ¢ 18 (60%) fully connected* —# =~ ¢4 =€l 8 (26%)
2b fully connected* — & — ¢4 =€l 17 (56%) chain!t =~ 8 — ¢l 4 (13%)
2b common effect!t &< ¢! 21 (70%) fully connected!© — 4 — 8 € = 8l 3 (9%)

Note. N correct is the number of participants who identified this structure correctly, and N error is the number of participants to make this particular error.
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Drawing phase
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Figure 6. Interface in Experiment 2. Note the info button on the right (2a and 2b) and the summary information
provided on the left (2b only: Nodes with a + symbol were clamped on, those with a — symbol were clamped
off, and those with no symbol were unclamped. Green [dark gray] nodes activated and gray [light gray] ones did
not). See the online article for the color version of the figure.
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We now move on to analyze the interventions selected by
participants in the two experiments. Because the task in Experi-
ments 1 and 2 was fundamentally the same, we will mainly report
analyses for all 139 participants together but where relevant will
also explore differences between Experiment 1 and 2 and between
the two conditions of Experiment 2.

Intervention Choices

Benchmarking the interventions. Participants’ ultimate goal
was to maximize their payout at the end of each problem (after their
12th test). However, as mentioned in the introduction, there are
various approaches to choosing interventions expected to help achieve
this goal. Here we use three “greedy” (one-step-ahead) value func-
tions—expected utility, probability, and information gain—to assess
how effectively participants selected different interventions.

To get a picture of the sequences of interventions favored by
efficient utility, probability, or information seeking learners, we
simulated the task 100 times using one-step-ahead expected
utility, probability, and information gain (as defined in the
introduction) to select each intervention. The prior at each time
point was based on Bayesian updating from a flat prior using
the outcomes of all previous interventions. All three measures
always favored simple interventions A+, B+, or C+ (see
Figure 8) for the first few tests for which the prior was rela-
tively flat. Then, as they become more certain about the under-
lying structure, they increasingly selected controlled interven-
tions with one node clamped on and another clamped off (e.g.,
A+, B—). After six tests, the probability that the models would
select one of these controlled interventions was .41 for the
utility gain model, .37 for probability gain model, and .51 for
information gain model. For the later tests, if expected utility of

the prior was already very close to 3 (full marks) and proba-
bility of correct classification was very close to 1, probability
and utility gain were unable to distinguish between interven-
tions, assigning them all expected gains of zero. Whenever this
happened, these models would select interventions randomly.
Information gain meanwhile continued to favor a mixture of
simple and controlled interventions. The information gain
model would occasionally select an intervention with two nodes
clamped on (4.5% of the time on tests 9 to 12). Other interven-
tions (e.g., clamping two nodes off or clamping everything) did
not provide any information about the causal structure so had
expected gains of zero. These were selected only by the utility
and probability gain models and only on the last few trials,
when they could not distinguish between the interventions and
so selected at random. The three approaches averaged scores of
14.1 (utility), 14.2 (probability), and 14.6 (information) correct
links (see Figure 9). Thus, within 12 trials it was possible for an
efficient one-step-ahead intervener to approach a perfect per-
formance, averaging at least 14/15 depending on the choice of
value function driving intervention choices.

Looking two steps ahead, the efficient active learners using
one of these measures average almost identical average final
scores (14.6, 14.4, and 14.6 points, respectively) despite still
using somewhat different sequences on interventions. The two-
step-ahead models selected a higher proportion of controlled
interventions than the greedy models (38%/30% for information
gain). Two-step-ahead probability and utility gain were always
able to distinguish between the interventions, meaning they
would no longer select interventions randomly on later tests.

For comparison, merely observing the system without clamping
any variables would have provided very little information, capping
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Figure 7. a. Causal test structures used in the experiments. From top to
bottom: 1. A-B single link [A — B]. 2. ABC chain [A — B, B — C]. 3.
Common effect B [A — B, C — B]. 4. Common cause A [A — B, A — C].
5. Fully connected ABC [A — B, A — C, B — C]. b—d. Averaged final
judgments over Experiments 1, 2a info button only and 2b info button +
summary. Note that the direct link was often marked for the chain structure
(row 2).

a learner’s ideal score at an average of 1.87 points per problem
(9.35 overall, or a .26 probability of identifying the correct graph).

Participant intervention choices.

Efficiency of intervention sequences. On average, partici-
pants selected highly efficient interventions in terms of utility,
probability, and information gain. Participants learned much more
than they would by picking interventions at random, and they
selected interventions that put their achievable score much closer
on average to the benchmark models than to a random intervener
in terms of their final expected utilities (see Figure 9). Participants
finished problems having learned enough that they could optimally
score an average of 13.4 (SD = 3.0) points per problem (M = 13.1,
SD = 1.9 in Experiment 1; M = 13.5, SD = .35 in Experiment 2)
and have a .72 (SD = .25) probability of getting each graph
completely right (M = .70, SD = .25 in Experiment 1, M = .75
SD = .23 in Experiment 2). This was significantly higher than
selecting interventions at random, which would permit an average
of only 11.6 points, or a .47 probability of getting each graph
completely correct, #(694) = 24, p < .0001. However, it was still
significantly lower than what could be achieved by consistently

BRAMLEY, LAGNADO, AND SPEEKENBRINK

intervening to maximize utility, #694) = —12.7, p < .0001,
probability, #(694) = —12.7, p < .0001, or information gain,
1(694) = —18.3, p < .0001. The quality of participants’ interven-
tions was strongly positively associated with their ultimate perfor-
mance. This is true for all measures of intervention quality tested
here: utility gain, F(1, 137) = 63, 7> = 0.31, p < .0001; proba-
bility gain, F(1, 137) = 81, T]2 = 0.37, p < .0001; information
gain, F(1, 137) = 87, > = 0.39, p < .0001.

Simple interventions. As with the efficient learning models,
simple interventions A+, B+, and C+ were by far the most
frequently selected, accounting for 74% of all interventions despite
constituting only 3 of the 27 selectable interventions (see Table 2).
Propensity to use simple interventions was positively associated
with performance across participants, F(1, 137) = 41, n? = .23,
p < .0001. As with the efficient learner models, the probability a
participant would select a simple intervention was highest at the
start and then decreased over tests, = —.03 = .007, Z = —4.1,
p < .0001 (see Figure 8).

Controlled interventions. Controlled interventions (e.g.,
A+, B—) were selected only 7.4% of the time overall. This is
not nearly as often they were selected by the efficient learner
models. However, in line with these models, participants’ prob-
ability of selecting a controlled intervention increased over
tests, B = .06 = .01, Z = 5.2, p < .0001 (see Figure 8).
Propensity to use controlled interventions was also positively
associated with performance, F(1, 137) = 14.1, 0 =.09,p=
.0002. For each additional informative controlled intervention
performed, participants scored .18 additional points in a task.
The chain and fully connected structures are the two that cannot
easily be distinguished without a controlled intervention (see
Figure 2), and accordingly we find use of controlled interven-
tions is higher when the generating causal network is a chain or
fully connected structure, 3 = 0.50 = .08, Z = 6.0, p < .0001.
In line with this, the use of controlled interventions also sig-
nificantly predicts participants’ probability of correctly omit-
ting the A — C connection in the chain structure, 3 = 1.7 = 4,
Z = 4.6, p < .0001. In addition, a higher proportion of partic-
ipants used controlled interventions at least once in Experiment
2 than in Experiment 1, x*(60) = 9.3, p = .002 (41/60 com-
pared to 44/79).

The fact that participants performed fewer controlled interven-
tions in later tests than the benchmark efficient learner models is
consistent with the idea that they were slower to learn. This would
mean they would require more of the simple interventions to reach
a level of certainty under which controlled interventions become
the most valuable choice. The modeling in the next section will
allow us to explore this possibility.

Other interventions. Participants sometimes selected inter-
ventions with two nodes clamped on (e.g., A+ B+), doing so 10%
of the time. While the information gain model would select these
interventions occasionally in later trials, participants were just as
likely to select them early on, f = 0.009 = 0.01, Z = 0.775, p =
4, and their propensity to select them was negatively associated
with their performance, F(1, 137) = 50, 1]2 = .27, p <.0001. This
suggests that participants typically did not use these interventions
efficiently, or did not learn from them appropriately. Frequency of
clamping everything (e.g., A+, B—, C—) was strongly negatively
correlated with performance, F(1, 137) = 50, 1% = .27, p < .0001.
Participants who selected this type of intervention averaged final
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Time

a. Proportion of simple (e.g., A+) versus controlled (A+, B—) intervention choices for the three

efficient learning models averaged over 100 simulations of the task. For later tests, based on increasingly peaked
priors, expected utility gain and probability gain no longer distinguish between interventions and start to choose
randomly while information gain continues to distinguish. b. Participants’ proportion simple and controlled
interventions over both experiments with a median split by performance. See the online article for the color
version of the figure.
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scores of only 8. Observing with no nodes clamped and clamping
one or two nodes off was rarely selected and was not significantly
associated with performance (ps = .14, .06, and .91, respec-
tively).®

Modeling Intervention Selection
and Causal Judgments

So far, we have analyzed people’s intervention selections at a
relatively high level, looking only at how often particular types of
intervention are chosen on average, either by good or bad partic-
ipants, early or late during learning, or depending on the underly-
ing causal structure. These high-level analyses have addressed the
first two of our research questions, answering both in the positive:

1. The majority of people are able to choose informative inter-
ventions and learn causal structure effectively, even when the
environment is fully probabilistic and abstract and there is a large
space of causal structures.

2. Most people can make use of complex controlling interven-
tions to disambiguate between otherwise hard-to-distinguish struc-
tures. Ability to do this is a strong predictor of correctly identifying
the causal network, especially when the true network is a chain.

So far we have not touched upon the clear differences between
interventions that fall within the same category (e.g., selecting A+
will provide very different information to B+ or C+ depending on
the learner’s current beliefs). Additionally, we have not yet tried to
distinguish which intervention selection measure is more closely in

Intervention efficiency
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Figure 9. Participants’ expected scores given the interventions partici-
pants had selected thus far. This is the best a participant could expect to
score given the interventions and outcomes he or she had experienced up
until that time point, averaged over the five problems. For comparison, the
other lines denote the mean expected scores of expected utility, probability,
or information maximizing active learners (shades of green [light gray])
and a passive learner who selects interventions at random (red [dark gray]),
based on the simulations detailed in the text. See the online article for the
color version of the figure.
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Table 2

Comparison of the Proportion of Interventions of Different
Types Selected by Participants in Experiments | and 2
(Conditions A and B), by Simulations Selecting Interventions at
(R)andom, and by Maximizing Expected (U)tility, (P)robability,
and (I)nformation Gain

Proportion selected

Experiment Simulation
Intervention type 1 2a 2b R U P 1
Observation .01 .01 .02 .04 .08 .16 .00
Simple (e.g., A+) 7373 77 11 34 38 .68
Controlled (e.g., A+, B—) .06 .09 .10 22 41 30 .30
Strange 1 (e.g., A+, B+) 1 .08 .05 .11 .07 .08 .02
Strange 2 (e.g., A—) .02 .02 .01 .11 .05 .05 .00
Strange 3 (e.g., A—, B—) .00 .00 .00 .11 .05 .05 .00

Overcontrolled (e.g., A+, B—, C—) .08 .07 .05 .30 .00 .00 .00

line with participants’ choices. Looking across all three experi-
ments, the three value functions favor different intervention(s) to
one another on many of participants’ tests. Utility and probability
gain disagree about what intervention should have been chosen on
19% of participants’ tests. Utility and information gain disagree on
36% of participants’ tests, and probability gain and information
gain disagree 39% of participants’ tests. However, simply counting
the frequency of agreement between participants’ interventions
and those considered most valuable by one or other measure is a
blunt instrument for understanding participants’ actions. The mea-
sures do not just give a single favored intervention but give a
distinct value for each of the 27 possible interventions. Further-
more, the benchmark models assume perfect Bayesian updating
after each intervention while a richer model comparison should
allow us to compare the different measures while relaxing the
assumption that participants are perfect Bayesians. Thus, to prog-
ress further we will now fit and compare a range of models to
participants’ sequences of interventions and structure judgments.
This will allow us to address our other research questions:

3. What objective function best explains people’s choices.

4. Whether people can plan more than one intervention
ahead.

5. Whether their belief update process is biased or con-
strained.

6. Whether we can capture their active learning with simple
heuristics.

On each test a participant chooses an intervention but also can
update their causal judgment by marking the presence or absence
of possible causal links. The models discussed below will describe
the intervention selections and causal judgments simultaneously,
by assigning a probability to each intervention choice (from the 27

¢ Clamping off two nodes provides no information about the causal
connections. Arguably, it still provides information about the spontaneous
activation rate of variables, but participants had already been trained on this
in the instructions.
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legal interventions) and to each combination of marked and un-
specified links (out of the 27 possible combinations of causal
connections). Free parameters are fitted to individual data, because
it is reasonable to assume that properties such as memory and
learning strategy are fairly stable within subjects but likely to
differ between subjects in ways that may help us understand what
drives the large differences in individual performance.

We fit a total of 21 models (see Figure 10) separately to each
participant’s data. The models can be classified as either
expectancy-based or heuristic models. The expectancy-based mod-
els assume that people choose interventions according to the
expected value of each intervention, maximizing either utility,
probability, or information gain (see Quantifying Interventions).
The models assume that the expectancies, as well as causal judg-
ments, are based on Bayesian updating of probability distributions
over the causal structures and the models are rational in the sense
that they are optimal with respect to people’s goals, although we
also allow for the possibility of cognitive constraints such as
forgetting and conservatism.

In Steyvers et al.’s (2003) study, many participants chose mod-
els that suggested they remembered only the result of their final
intervention (having apparently forgotten or discounted the evi-
dence from their previous observations), while others seemed to
remember a little more. This is in line with what we know about
the limited capacity of working memory (Cowan, 2001; Miller,
1956) and its close relationship with learning (Baddeley, 1992).
Thus it seems likely that people are somewhat “forgetful”, or
exhibit recency with respect to integrating the evidence they have
seen. We expect that in Experiment 2b, where a summary of past
outcomes is provided, memory load should be reduced and par-
ticipants should display less recency effects.

With regard to conservatism, research suggests that people
interpret new data within their existing causal structure beliefs
wherever possible (e.g., Krynski & Tenenbaum, 2007). Anecdot-
ally, people are typically slow or reluctant to change their causal
beliefs. This suggests that people may also be conservative (Ed-
wards, 1968) when updating their causal beliefs, even during
learning. An additional motivation for this idea is the consideration
that appropriate conservatism could actually complement forget-
ting; people may mitigate their forgetfulness about old evidence by
remembering just what causal structural conclusions they have
previously drawn from it (Harman, 1986). For example, suppose a
participant registers an A — B causal link after the first three
interventions. We can take this as a (noisy) indication he is fairly
confident at this stage that, whatever the full causal structure is, it
is likely to be one with a link from A to B. By the time the
participant comes to his sixth intervention, he might not remember
why he had concluded three trials earlier that there is an A — B
link, but he would still be sensible to assume that he had a good
reason for doing so at the time. This means that it may be wise to
be conservative, preferring to consider models consistent with
links you have already marked rather than those that are inconsis-
tent even when you cannot remember why you marked the links in
the first place.

In the heuristic models, intervention selections are not based on
Bayesian belief updating and the expected value of interventions
but are derived from simple rules of thumb. Although these models
are not optimal with respect to any criterion, they can approximate
the behavior of the rational models reasonably well.

Expectancy-Based Models

We will call a model that assumes participants are pure prag-
matists, choosing each intervention with the goal of increasing
their expected score, a utilitarian model. A utilitarian model as-
sumes that participants choose interventions that are expected to
maximize their payment at the next time point, or utility gain U(G)
(see Quantifying interventions).” We will call a model that as-
sumes people are just concerned with maximizing their probability
of being completely right (disregarding all other possible out-
comes, or their payouts) a gambler model. A gambler model
assumes participants choose actions that are expected to maximize
the posterior probability of the most likely structure, or probability
gain W¥(G). We will call a model that assumes people try to
minimize their uncertainty (without worrying about their proba-
bility of being right, or how much they will get paid) a scholar
model. A scholar model assumes that participants choose actions
to maximize their expected information gain, H(G), about the true
structure at the next time point.

Updating causal beliefs and forgetting. All expectancy-
based models assume that the learner’s causal beliefs are repre-
sented by a probability distribution over all possible causal struc-
tures. At each time point, this probability distribution is based on
Bayesian updating of their prior from the previous time point to
incorporate the evidence provided by the outcome of their latest
intervention. However, rather than a complete Bayesian updating
(Equation 5), we allow for the possibility that evidence from past
trials may be partly discounted or forgotten.

There are various ways to model forgetting (Lewandowsky &
Farrell, 2010; Wixted, 2004). A reasonable (high-level) approach
is to assume that people will forget random aspects of the evidence
they have received, leading to a net “flattening” of participants’
subjective priors going into each new intervention. We can for-
malize this by altering the Bayesian update equation, such that a
uniform distribution is mixed with the participants’ prior on each
update to an extent controlled by a forgetting parameter y € [0, 1].
So instead of

g la, 0) > po,1q, )PLg)

as in Equation 5, we have

1
rLg1qs 0.« plo,1 g, g)[(l —Y)pdg) + v;] (11)

where m is the total number of structures in G, and distributions are
computed recursively as p,(g) = p,_,(glg,_,, 0,_;). By setting y to
0 we get a model with no forgetting, and by setting it to 1 we get
a model in which everything is forgotten after every test.
Choosing interventions. The expectancy-based models as-
sume that intervention choices are based on the expected values of
interventions. Let v,,, . . . , v, denote the expected values v, =
E [V(Glg, o)], where the generic function V is identical to the

7 For each judgment the expected payout was calculated as the points
received for that judgment summed over every possible graph, each mul-
tiplied by the posterior probability of the graph. As an example, endorsing
common cause [A — B; A — C] given the true structure is the chain
[A — B; B — C] was worth one point because one of the three link-spaces
(A-B) is correct and the other two are wrong.
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Conservative Conservative Conservative
forgetful utilitarian forgetful gambler forgetful scholar
a,B,y,n a,B,y,n a,B,y.n
Forgetful Conservative Forgetful Conservative Forgetful Conservative
utilitarian utilitarian gambler gambler scholar scholar
al BIY al Bln al Blv al B/n ul BIY al Bln
\ Conservative %
passive
learner
B.n
Conservative
random
n
Fa|:s.|gh.t - Utilitarian s g Gambler e Scholar
utilitarian B gambler a B scholar a B
a3 ! a B i a, !
Passive learner
B
Disambiguator Sitripe
9 s| endorser Random
0,0,p,K 0
,0,P

Figure 10. Schematic of the relationships between the models. Each model is nested within its parents and lists
its fitted parameters. Blue rectangles (top two rows) indicate “bounded” models, green rectangles (fifth row)
indicate “ideal” models, red rectangles (third, fourth, sixth, and seventh rows) indicate “null” models, and yellow
rectangles (seventh row) indicate “heuristic” models. Arcs representing the nesting of the conservative null
models in the nonconservative null models are omitted for clarity. See the online article for the color version of

the figure.
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utility gain U (Equation 8) in the utilitarian models, the probability
gain ¥ (Equation 9) in the gambler models, and the information
gain H (Equation 10) in the scholar models. Note that these
quantities are computed from the distributions p,(glg, o) and
pAg) = p,—,(glq,—,, 0,_,) as defined in Equation 11. We assume
that chosen interventions are based upon these values through a
variant of Luce’s choice rule (Luce, 1959), such that the proba-
bility a learner selects intervention ¢ at time ¢ is given by

e*Var

pg,=q) S (12)
The parameter o controls how consistent the learner is in picking
the intervention with the maximum expected value. As o — o the
probability that the learner picks the intervention with the highest
expected value approaches 1 and the probability of picking any
other intervention drops toward 0. If o = 0, then the learner picks
any intervention with an equal probability; that is, p(q, = q) = 1/n,
forall g € Q.

Marking causal beliefs and conservatism. All expectancy-
based models assume that learners’ marked causal links are a noisy
reflection of their current belief regarding the true causal models,
as reflected by the posterior distribution p,(glg, o,). However,
rather than using p,(glg,. 0,) directly, we allow for the possibility
that the marking of causal beliefs may be subject to conservatism.

To allow for conservatism, we assume marked causal beliefs
reflect a conservative probability distribution p;(g!g,,0,), which is
a distorted version of the current distribution p,(glg,, 0,) in which
the probability of causal structures consistent with the already
marked causal links is relatively increased. Technically, this is
implemented by multiplying the probability of consistent causal
graphs by a factor € [0, %] and then renormalizing the distri-
bution.® The conservative probability distribution is given by:

I[gEC]pt(g lq,, 0,

ILgECJp[(gr lgs 0,)

n
g'EGn

pi(glg,0)= S (13)

where I[g € C] is an indicator function with value 1 if the structure
g is consistent with the currently marked links, and O otherwise.
Marked links are assumed to be selected based on this conservative
distribution. Then, this distribution is used to compute the values
of the subsequent intervention options. For m > 1, sticking with
already specified links is more likely than changing them all, other
things being equal, while if 0 = n < 1, this would lead to
anticonservatism. Unlike forgetting, which has an effect that ac-
cumulates over trials, the conservative distortion is applied “tem-
porarily” on each trial when marking beliefs and choosing the next
intervention, but discarded thereafter, such that the prior on trial
t+ 1is p,y1(g) = plglq, 0,) and not p;(qlq, o). By setting n =
1 we get a model that assumes participants are not neither conser-
vative nor anticonservative.

As for interventions, we assume that a learner marks causal links
through a variant of Luce’s choice rule. The marking of links on
each trial was optional, and initially all links were unspecified. As
a result, links were often left unspecified, in which case a set of
models S, rather than a single causal model, is consistent with the
marked links.® To capture this, the models marginalize over all
structures consistent with the links marked on a trial:

2 s eBrlf(g 141,0,)
g

S P19
8

p(Stated-belief,) = (14)

For example, if the participant has marked A — B but has so far
left A-C and B-C unspecified, then the model sums over the
probabilities of all the graphs that are consistent with this link. If
a participant has not marked any links then their belief state for
that time point trivially has a probability of 1.'® By setting B to
zero we get a model that assumes that participants are unable to
identify causal links above chance regardless of what evidence
they have seen.

Null, ideal and bounded expectancy models. In summary,
the expectancy-based models have four free parameters: o controls
the degree to which the learner maximizes over the intervention
values, (3 controls the degree to which the learner maximizes over
their posterior with their link selections at each time point, y
controls the extent to which participants discount or forget about
past evidence and m controls the extent to which participants are
conservative about the causal links they mark. See Figure 11 for a
flowchart of how the full expectancy-based models work. By
constraining the models such that combinations of these parame-
ters are fixed, a nested set of expectancy-based models is obtained
(see Figure 10). Fixing parameters to a priori sensible values can
be important. For instance, we can assess whether a learner is
forgetful by comparing a model in which the y parameter is
estimated to one in which the parameter is fixed to y = 0.

A useful way to break down these models is divide them into
null models, ideal models, and psychologically bounded models.
We will call models with one or both of o and 3 fixed to zero null
models. These models either assume that no active intervention
selection takes place (o = 0, interventions are selected randomly)
and/or that no successful causal learning takes place (B = 0). We
will call the models in which vy is fixed to O and m to 1 ideal
models. These models are ideal in the sense that they set aside
potential psychological constraints and so are at the computational
level according to Marr’s hierarchy (Marr, 1982). Comparing just

8 This parameter works only once participants have registered their
beliefs about at least some of the links, but this is the case on 91% of trials.
On 76% of these trials participants had registered a belief for all three links,
meaning that the conservativeness parameter upweights the subjective
probability of this one structure while participants are selecting their new
belief state and choosing the next intervention. This means that even if a
learner’s posterior is relatively flat due to forgetting, structures consistent
with his (or her) marked links still stand out, leading him to behave as if
he has selectively remembered information confirming these hypotheses.
On the 24% of trials in which some but not all links remained unspecified,
the conservativeness parameter led to the structures consistent with the
established links being upweighted, leading the learner to favor interven-
tions likely to distinguish between these options: Concretely, there would
be 9 structures consistent with one specified link and 3 structures consistent
with two specified links.

“ A side effect of this aspect of the design is that we have more data on
some participants than others. Those who rarely marked links before the
end of the task reveal less information about how their belief at one time
point influences their belief at subsequent time points.

19 Cyclic Bayesian networks cannot be defined within the Bayesian network
framework, and participants were instructed that they were impossible during
the instructions. Therefore, on the 4.3% of trials in which participants marked
a cyclic structure ([A —B,B —C,C — AJor [A —C,C —B,B — A)]),
their belief state was treated as unspecified so that the model did not return a
likelihood of zero for that participant.
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Report judgment 3

Conservative posterior n

Figure 11.

Posterior y

Conservative prior n

Observe outcome

A flowchart of the expectancy based models. White nodes are observed quantities; gray nodes are

unobserved quantities. Clockwise from the top right: The causal judgment reported at the previous time point and
the prior distribution over causal structures combine to form a conservative prior. This is used to choose the next
intervention. The outcome of the intervention is observed, and this is integrated with the (partially forgotten)
prior to arrive at the posterior distribution over causal structures. The posterior and the previously reported
judgment are mixed to form a conservative posterior that influences the new judgment. The posterior becomes

the new prior, and then the process repeats.

these models addresses the question of which computational level
problem participants’ actions and judgments suggest they are
(approximately) solving. Finally, we will call the full models in
which one or both of y and m are fit to the data bounded models.
These models are bounded in the sense that they attempt to capture
how psychological processing constraints potentially distort or
change the computational problem, allowing us to explore how
people might mitigate this in their intervention strategies.

Sensible evaluation of the bounded models requires different
null models. For example, it may often be the case that someone is
conservative about their beliefs despite those beliefs being com-
pletely random (3 = 0). Alternatively people might be conserva-
tive passive learners yet unable to select sensible interventions,
choosing interventions that are not more useful than chance (o« =
0). In these cases, we would have no reason to ascribe scholarly,
gamblerly, or utilitarian behavior despite our models capturing
some systematicity in participants’ data.

Far-sighted scholars, gamblers and utilitarians. As men-
tioned in Greedy or Global Optimization? the values of different
actions depend to some extent on how far the learner looks into the
future. Computing expected values looking more than two steps
ahead quickly becomes intractable even in the three-variable case,
but we were able to compute the ideal two-step-ahead models for
the three measures.'' This allows us to check if there is evidence
that people are able to look more than one step ahead when
choosing interventions. Accordingly, we fit additional farsighted
utilitarian, gambler, and scholar models in which the intervention
values for looking one step ahead were replaced with those looking
two steps ahead. We can compare these to the one-step-ahead ideal
models to see if there is evidence that participants were planning
more than one step ahead. We did not include freely estimated
forgetting (y) or conservatism (v) parameters in these models,
because recomputing the two-step-ahead intervention values on
the fly for different y and rm increments was prohibitively compu-
tationally expensive.

Heuristic Models

In addition to the various expectancy-based models described
above, we explored whether people’s intervention patterns can be
well described by heuristic active learning models. By heuristic
models, we mean models in which probabilities are not explicitly
represented and values are not calculated for different interven-
tions. Instead, these models assume that learners follow simple
rules of thumb in order to choose their interventions, and update
their causal models, without performing computationally demand-
ing probabilistic information integration (Gigerenzer, Todd, & the
ABC Research Group, 1999). Here we fit two models, the first
nested in the second.

The simple endorser. One way to significantly simplify the
causal learning problem is to ignore the dependencies between the
causal connections in the possible graphs (Fernbach & Sloman,
2009). Thus, if intervention A+ is performed and both B and C
activate this can be seen as evidence for an A — B connection and,
independently, evidence for an A — C connection. In contrast a
full Bayesian treatment would also raise the probability of other
hypotheses (the an ABC and ACB chains and fully connected
networks). Another way to simplify the problem is to ignore the
Bayesian accumulation of probabilistic evidence and rather update
belief directly to be consistent with the latest evidence. Concretely,
in this task these assumptions would lead to people simply clamp-
ing variables on, one at a time, and adding links to any other nodes
that activate as a result (removing any links to other nodes which
do not activate as a result). We can operationalize this with a three
parameter model (see Figure 12) which selects one of the simple
interventions with probability 6 € [0, 1] or else selects anything
else with probability 1 — 6. With a probability o € [0, 1] the belief

! These expectancies are computed recursively, taking the maximum
over the second set of interventions and passing these values back to the
first set of interventions. See www.ucl.ac.uk/lagnado-lab/neil_bramley for
code.
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state is updated such that it becomes the prior belief state B plus
links L from the current clamped node to any activated nodes (and
minus those not in L but in B), while with probability 1 — o it
either: stays the same (with probability p € [0, 1]) or takes any
other state (with probability 1 — p). A potential strength of this
model in fitting the data is that it leads to systematic misattribution
of a fully connected network when the true structure is a chain, a
behavior exhibited by many participants. This happens because
when the true structure is a chain, intervening on the root node will
tend to lead to both other nodes activating, leading to the addition
of direct links from the root node. When the middle node is
intervened on this will tend to activate the last node, leading to the
addition of the third link. To the extent that participants frequently
act in this way, 6 and o will be high and the model fit will be good,
and to the extent that they act in other ways the model will
approach the fit of the null model in which beliefs and actions are
selected at random.

The disambiguator. As we show earlier in the paper, con-
trolling variables is a hallmark of scientific thinking, and a neces-
sary part of successfully disambiguating causal structures (Cart-
wright, 1989; Kuhn & Dean, 2005). In this task this takes the form
of a controlled intervention in which one node is clamped on and
another clamped off (e.g., A+ B—), normally performed after
observing some confounding evidence (i.e., when you clamp one
node on and both other nodes activate). This action tests whether
the node that remains unclamped is a direct effect of the node
which is clamped on (see Figure 3), and thus disambiguates
between the structures which could explain why both unclamped
nodes activated on the previous trial. In the general case, the
putative cause node would remain clamped on, a single putative
effect node would be left unclamped and the other N —2 nodes
would be clamped off.

The model is operationalized as selecting A+, B+, or C+ or a
disambiguation step (e.g., A+ B—) with probability 6 and some-
thing else with probability 1 — 6 (see Figure 13). Propensity to
select a simple endorsement step rather than a disambiguation step

Intervention®

1-6)/(n-3

anything else

Beliefy_ ; + L
o
(a-0)1 -9
anything else

m -2
Figure 12. Process trees for the simple endorser. The learner follows an
arrow with the probability written under the arrow and takes the action in
the end node.

Belief !

A" orB* or C*

Intervention® A B etc

;

(1 -o0)/(n-
anything else

Figure 13. Process tree for the intervention selection step for the disam-
biguator. Belief update step is the same as for the simple endorser.

is governed by a fourth parameter k € [0, 1]. If a disambiguation
step is performed and the unclamped node does not activate, then
any connection from the activated node to the unclamped node is
removed with probability o. The belief update step is otherwise the
same as for the simple endorser.

Model Estimation and Comparison

All models were fitted to individual’s data by maximum likeli-
hood estimation.'? These consist of four nested sets, one for each
of the three expectancy measures (utility gain, probability gain,
and information gain) and one for heuristic models. Each nested
model has between zero and four parameters.

McFadden’s pseudo-R? is computed for each model to give an
idea of its goodness of fit."'* This measure does not penalize model
complexity so models are compared throughout using the Bayesian
information criterion (BIC, Schwarz, 1978) which can be used to
compare both nested and nonnested models (Lewandowsky &
Farrell, 2010).

Model Fit Results

Full results of the model fits are contained in Table 3. Overall,
the best fitting model was the fully bounded scholar model based
on maximizing information gain with both conservatism and for-
getting (hereafter CF scholar). This model had a pseudo-R? of .47,
indicating a very good fit to the data,'* and was the best fitting
model for 103 out of the 139 participants over Experiment 1, 2a,
and 2b according to the BIC. Of the 36 participants that were not
best described as CF scholars, 24 were in Experiment 1 and many
of these were best fit by the conservative random null model. See
Figure 14 for a visual comparison of the scholar model with either
or both of forgetting and conservatism as fit to a participant in
Experiment 2a. Looking at their average scores, we see that those
best described as CF scholars perform much better than those who
are not CF scholar (M = 11.3), non-CF scholar, M = 6.6, 1(137) =
7.1, p < .0001.

2 We used the Nelder-Mead algorithm to numerically maximize the
likelihood, as implemented in R’s optim function. Optimization was vali-
dated by repetition with different starting parameter values.

logL(M )
) ) . _IOgL(Mminimal)’ .
the likelihood of model M. The minimal model M, ; ... 1S random (no
learning) in Table 3, where both actions and endorsements are completely
random.

14 Values between .2 and .4 are considered a good fit (Dobson, 2010).

13 McFadden’s pseudo—R2 =1- where L(M) denotes
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Table 3

BRAMLEY, LAGNADO, AND SPEEKENBRINK

Total BICs, Median Parameter Estimates, and Pseudo-R> Values for All Models

Model BIC o B Y log(m) pseudo-R? Best fit Best ideal Best heuristic
Random 98,396 0 0 5 1
Passive 84,487 5 0.15 0 9
U 79,905 6.1 4.9 0.2 0 1
G 80,718 11 4.9 0.19 0 1
S 75,236 6 4.9 0.25 1 117
Farsighted U 78,576 9.3 4.9 0.21 0 0
Farsighted G 78,715 13 4.9 0.21 0 1
Farsighted S 76,229 4.1 4.9 0.24 0 5
C random 76,574 4.5 0.23 9 0 28
C passive 75,453 5.7 6.7 0.25 0 0 0
CCU 72,635 7.1 5.8 3.1 0.28 0
CG 73,739 12 5.5 2.8 0.27 0
CS 68,190 6.7 5.8 33 0.33 0
FU 67,694 11 14 0.68 0.33 4
FG 70,027 32 12 0.79 0.31 1
FS 64,039 7.7 11 0.47 0.37 2
CFU 58,413 15 16 0.93 0.43 5
CFG 61,680 53 17 0.97 1.3 0.4 6
CFS 54,757 8.3 13 0.81 2.3 0.47 103

0 K [ p
Simple 64,985 0.85 0.22 0.63 0.36 5 61
Disambiguator 64,100 0.95 0.22 0.63 .96 0.37 3 49
Note. Letters in the first column indicate (C)onservative and/or (F)orgetful, (U)tilitarian, (G)ambler, and (S)cholar models. The Best fit column gives the

number of participants best fit by each model according to the Bayesian information criterion (BIC). The Best ideal column gives the same statistics as
the Best fit column but includes only the ideal learner models and appropriate null models; the Best heuristic column does the same for the heuristic models.

Inspection of the forgetful models suggests that participants
forgot a large amount of the evidence they received with median
forgetting rates (ys) of .68, .79 and .47 for the utilitarian, gambler,
and scholar models respectively. When paired with conservatism
in the conservative models, forgetting rates become even higher.
This makes intuitive sense, because high conservatism can result in
a high probability for already marked links that would otherwise
have to be due to participants maintaining more of the true pos-
terior (see Figure 14). Looking at the parameter estimates of the
CF scholar model, more forgetful people were also more conser-
vative, with a significant rank—order correlation between y and n
(p = .43, p <.0001). In addition both forgetting and conservatism
are negatively correlated with participants’ overall scores, p =
—.70, p < .0001 for vy and p = .53, p < .0001 for m.

Looking across experiments, we see that median forgetting (y) in
the forgetful scholar model drops considerably going from .71 in
Experiment 1 to .30 in Experiment 2a and slightly further again to .25
in Experiment 2b. Naively we might expect that participants in
Experiment 2b should not need a forgetting parameter, because they
could see all of their past actions and outcomes. However, only one
participant in Experiment 2b and none in Experiment 2a or 1 were
better fit by a model without a forgetting parameter, meaning that the
parameter still did work even for participants in Experiment 2b.'
Rather, we conclude that “forgetting” in our models does not just
capture people’s inability to recall past evidence. More generally, we
think it captures a recency bias or tendency to attend disproportion-
ately toward newer over older evidence regardless of whether the
older evidence is still accessible.

Ideal models. Although the CF scholar model performed best
overall, the scholar, gambler, and utilitarian model predictions

were often relatively similar when all four parameters were in-
cluded. This could be because for flatter posteriors, the interven-
tion values according to these models do not differ as much as they
do when the posteriors are more peaked. Comparing predictions of
the models with increasing forgetting rates confirms this (see
Figure 15), with the level of agreement about the best interven-
tion(s) and the average bivariate correlation between values of the
different interventions all approaching 1 as forgetting rate in-
creases toward 1. For a clearer assessment whether learners are
best described as scholars, gamblers or utilitarians, we turn to a
comparison of the ideal versions of these models (without forget-
ting or conservatism).

Considering only the ideal models and the relevant null models (see
Figure 10 and the Best ideal column in Table 3), the scholar model
clearly outperforms the utilitarian and gambler models. In this set of
models, the scholar best captures 117 out of the 139 participants,
including almost all high-scoring participants (scholar M = 10.8,
nonscholar M = 6.4). Nine of the poorest participants (average score
5.5) were also better described as achieving some learning, despite
failing to select interventions more useful than chance (passive
learner), but none were best fit by the completely chance-level ran-
dom model, in which both a and 3 were set to zero.

Looking across experiments, we see that median as for the ideal
scholar model, controlling maximization over intervention values,
increase from 5.2 (SD = 2.7) in Experiment 1 to 6.6 (SD = 3.0)
in Experiment 2a and 7.1 (SD = 3.0) in Experiment 2b. Likewise,

!5 This participant identified every connection correctly and was best
described as an ideal scholar.



dual user and is not to be disseminated broadly.

gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo,

This article is intended solely for the personal use of the

CONSERVATIVE FORGETFUL SCHOLARS 727

Participant 5 in Experiment 2a identifying the causal chain
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Figure 14. Visual comparison of fitted models. a. Participant 5 in Experiment 2a, identifying the chain (A — B,
C — B) structure. Plus and minus symbols indicate interventions, gray nodes indicate the resultant activations, and
the arrows replicate those marked by the participant at each time point. b. The probability that the participant registers
each causal structure according to the scholar, forgetful scholar, and conservative forgetful scholar models (their actual
choice is the full circle). c. The probability of selecting each of the simple and controlled interventions on the next test
(actual choice is the dashed circle). See the online article for the color version of the figure.

median 3s, controlling maximization over the posterior under the
scholar model, increase from 3.5 (SD = 26) in Experiment 1 to 5.9
(SD = 3.5) in Experiment 2a and 6.5 (SD = 2.9) in Experiment 2b.
This suggests that when the task was clarified and especially when
summary information was provided, participants’ interventions

judgments were closer to those arising from expected information
maximization and Bayesian inference.

There is no evidence that people were able to look more than
one step ahead in this task though, with across-the-board worse fits
for the farsighted scholar, gambler, and utilitarian models and only
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6/139 participants best fit by one of these models rather than the
one-step-ahead or null models. These were not the most gifted
participants, scoring an average of only 7.5, suggesting that the
resemblance between their interventions and to those favored by
the two-step-ahead expectancies was accidental.

In summary, comparing the ideal learner models shows that
successful causal learners’ actions and causal judgments are more
closely related to the computational level problem of reducing
uncertainty than those of maximizing probability or utility gain.

Heuristic models. When comparing the full set of models,
few of the participants were best described by either of the heu-
ristic models. Nevertheless, these models fit relatively well despite
their algorithmic simplicity, with BIC values in the range of the
forgetful Bayesian models. Ignoring the expectancy-based models,
we can, similarly as previously for the ideal models, compare the
heuristic models against the relevant null models (see Table 3, last
column). From this we can see that the better fitting heuristic
overall is the disambiguator. However, more individual partici-
pants are better described as simple endorsers (61) than disam-
biguators (49), with the remainder being described by the conser-
vative random null model. The majority (18/28) of those better
described as conservative random are in Experiment 1 and had
average scores of only 6.4. Over Experiments 1, 2a, and 2b, those
described as disambiguators do slightly better than those described
as simple endorsers, #(101.6) = —2.0, p = .04. Disambiguators
used complex interventions on 8.8% of trials (14.8% for chain and
fully connected models) while simple endorsers rarely or never
used complex interventions (1.3% of the time; 2% of the time for
the chain and fully connected models).

General Discussion

Overall, our analyses suggest that the majority of people are
highly capable active causal learners, both in terms of selecting
useful interventions and in terms of learning from them. Having
identified task confusion as the cause for many of the poorer
performances in Experiment 1, we found that with an in-task
reminder of the instructions in Experiment 2, almost all partici-
pants performed very well. Allowing participants to see the results

of their past tests did not make a significant difference to perfor-
mance but did significantly reduce task completion time. because
performance was already near ceiling in Experiment 2, we can see
the quicker completion times suggesting that the history of past
trials did make the task somewhat less demanding.

Simulations of efficient utility-, probability-, and information-
maximizing active learning showed that starting with simple in-
terventions and gradually switching to more focused controlled
interventions made for an efficient interventional strategy. We see
participants exhibiting this same pattern, starting with almost ex-
clusively simple interventions and gradually using more controlled
ones as they narrow down the space of possible structures. Partic-
ipants’ interventions were also somewhat sensitive to the structure
being learned, with more controlled interventions being selected
on the chain and fully connected networks, where it was very hard
to identify the correct causal structure without at least one con-
trolled intervention. While participants were generally less in-
clined to select controlled interventions than the benchmark mod-
els, this is consistent with their learning being slower and more
imperfect, as is reflected by our fitted models.

We can think of simple interventions as open-ended tests. They
do not test any one hypothesis in particular and have multiple
possible outcomes, each of which can be consistent with several
different causal interpretations (e.g., if there are two activations
following a simple intervention, these could result from a chain,
common effect, or fully connected structure). However, simple
interventions are powerful at first because they quickly reduce the
space of likely models. In contrast, controlled interventions can be
seen as more focused tests. They have only two possible outcomes
and lend themselves to distinguishing unambiguously between two
or three causal structures that perhaps differ by only one causal
connection. This progression from open-ended to more focused
testing gels with a picture of people as natural scientists, first
exploring the space and identifying a candidate causal model, then
progressively refining this with focused experiments. We found
that the propensity to select controlled tests was closely linked to
high performance, suggesting that only more sophisticated causal
learners would progress from the exploratory stage to the stage of
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performing specific controlled hypothesis tests. The idea that con-
trolled interventions are more cognitively demanding than simple
ones is supported by research on complex control (e.g., Osman,
2011), where ability to recognize that one must simultaneously
manipulate two variables to control a system is difficult for many
people.

We found that participants had a strong tendency to mistake
chains for fully connected structures across both experiments. One
reductive explanation for this is that some participants may have
misunderstood the task demands, interpreting links as meaning that
the parent node is a direct or indirect cause of the child node.
However, the instructions were clear on this point, demonstrating
the way in which clamping an in-between node off would block
activation passing along a chain. Instead, we conclude that this
mistake is a marker for many participants’ heuristic causal learning
strategies. This is confirmed by the large number of participants
whose actions and judgments are better described by the simple
endorsement heuristic that systematically overconnects chains
rather than the disambiguation heuristic.

We compared computational models of efficient causal learning,
driven by three plausible measures of intervention values: ex-
pected information gain, probability gain, and utility gain. Overall,
the models driven by information gain (scholars) better fit the large
majority of participants’ interventions than models driven by prob-
ability gain (gamblers) or utility gain (utilitarians). This was par-
ticularly clear looking at the ideal models (without forgetting or
conservatism). This means that, however participants were choos-
ing their interventions and updating their beliefs, they were man-
aging to do so in a way which broadly approximated the solution
to the computational level problem of maximizing information
rather than that of minimizing error or maximizing utility.

Venturing one rung down the ladder from the computational
level toward psychological process (Jones & Love, 2011; Marr,
1982), we explored “bounded” versions of our models. We in-
cluded forgetting and conservatism parameters capturing the idea
that people might be biased in their learning by plausible memory
and processing constraints. The fit of our models was greatly
improved by inclusion of these parameters and including both
parameters led to much better overall fits than including only one.
The two parameters were correlated, supporting the idea that they
complemented one another: for example, the more forgetful a
learner is about past evidence, the more conservative they need to
be in their beliefs in order to be an effective learner. Therefore,
these models provide an account of how moderate forgetting of old
evidence paired with appropriate conservatism about existing
causal beliefs can lead to effective active causal learning.

Allowing participants to draw and update models as they went
along may have affected their learning, perhaps distracting them,
or leading them to place more emphasis on earlier marked links.
Furthermore, while we accept that the beliefs reported by partici-
pants at each time point are at best noisy markers of their actual
beliefs about the true structure, we feel that these are largely
unavoidable aspects of tracing beliefs throughout learning. We
tried to minimize the extent to which eliciting beliefs distracted
participants by making the step optional and hoping that partici-
pants would voluntarily record their beliefs as an aid to memory.
It seems this was what most participants did, as links were drawn
on 91% of tests, and neither varied wildly nor remained static from

trial to trial. As a result we have been able to explore patterns of
sequential causal learning in an unprecedented level of detail.

Taking another step toward the process level, we also looked at
whether participants’ actions could be reasonably captured by
simple heuristics. We noted that simple endorsement (Fernbach &
Sloman, 2009), based on local computation, could capture much of
the behavior of many participants. This may explain why so many
participants judged the fully connected structure when the true
structure was the chain. However, some participants also per-
formed the crucial controlling disambiguation steps, which cannot
be easily captured in a local computation framework. We opera-
tionalized this here as an alternative step occasionally performed at
random. However, we note that a disambiguator type model has
the potential to be refined by incorporating sequential dependence.
For instance, a natural hypothesis is that disambiguation steps are
most likely to be performed following ambiguous evidence (i.e.,
multiple activations). Another possibility is that learners are likely
to perform disambiguation steps with the same node clamped on as
they had clamped on for the step that generated the ambiguity.
However, further refining the heuristic models in the current
context is likely to make them increasingly indistinguishable from
our expectancy-based models. To confidently identify people’s
heuristic strategies we will need to look at learning problems with
a larger number of variables and the potential for larger diver-
gences between heuristics and computational level models.

With these experiments and analyses we have begun the process
of studying active causal learning behavior, starting with a simple
open-ended experiment (Experiment 1) and more controlled
follow-up (Experiment 2). Having motivated and constructed mod-
els of participants’ actions and judgments at computational and
process levels, the next steps will be to come up with controlled
tests that allow us to rigorously test some of these predictions. For
example, an avenue of future work will be to look at the range of
environments within which heuristic strategies are effective. We
hypothesize that the extent to which one must disambiguate (or
control for other variables) depends on how noisy, complex or
densely causally connected the environment is. For more than
around 5 or 6 variables, explicit calculation of expectancies be-
comes intractable while the calculations required by the active
causal learning heuristics remain computationally trivial. In every-
day life people have to deal with causal systems with many
variables, far more than would plausibly allow explicit expectan-
cies to be computed. One way people might achieve this is by
performing an appropriate mixture of these “connecting” simple
endorsement and “pruning” disambiguation steps.

Conclusions

In this paper we asked how people learn about causal structure
through sequences of interventions. We found that many partici-
pants were highly effective active causal learners, able to select
informative interventions from a large range of options and use
these to improve their causal models incrementally over multiple
learning instances. We found that successful learners were able to
make effective use of controlling double interventions as well as
simple single interventions, doing so increasingly as they narrowed
down the hypothesis space. The large majority of participants
acted like scholars, choosing interventions likely to reduce their
uncertainty about the true causal structure, rather than to increase
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their expected utility or probability of being correct. We found no
evidence that people were able to plan ahead when choosing
interventions. We formulated bounded models that include forget-
fulness and conservatism. These show that people exhibit recency
when integrating evidence but also suggest that they mitigate this
to a large extent by being appropriately conservative, preferring
causal structures consistent with previously stated beliefs. Finally,
we identified simple endorsement and disambiguation as candidate
components of heuristics for active causal learning.
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