
Natural science: Active learning in dynamic physical microworlds
Neil R. Bramley1 (neil.bramley@ucl.ac.uk), Tobias Gerstenberg2 (tger@mit.edu)

Joshua B. Tenenbaum2 (jtb@mit.edu)
1Experimental Psychology, UCL, London, WC1H 0DS, UK

2Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA

Abstract

In this paper, we bring together research on active learning
and intuitive physics to explore how people learn about
“microworlds” with continuous spatiotemporal dynamics.
Participants interacted with objects in simple two-dimensional
worlds governed by a physics simulator, with the goal of
identifying latent physical properties such as mass, and forces
of attraction or repulsion. We find an advantage for active
learners over passive and yoked controls. Active participants
spontaneously performed several kinds of “natural exper-
iments” which reveal the objects’ properties with varying
success. While yoked participants’ judgments were affected
by the quality of the active participant they observed, they did
not share the learning advantage, performing no better than
passive controls overall. We discuss possible explanations for
the divergence between active and yoked learners, and outline
further steps to categorize and explore active learning in the
wild.

Keywords: active learning; intuitive physics; causality; prob-
abilistic inference; mental simulation.

The great majority of research on human and machine
learning has focused on passive situations, where evidence is
fixed or preselected. Participants are typically invited to make
judgments based on carefully pre-chosen evidence; and ma-
chine learning algorithms compete for predictive accuracy on
pre-existing datasets. In contrast, Nature’s successful learners
are necessarily embedded in the world they must learn about
and exploit. Thus, it is the norm for human learners to exert
some degree of active control over the evidence they see. To
understand human learning then, one must also understand
the myriad decisions about where to attend, and what action
to take, that control and manage the flow of incoming evi-
dence. An effective active learner will be able to bootstrap
their learning and improve the utility of the information they
receive by tailoring it to resolving their subjective uncertainty.
On this view, we can think of the little actions in everyday life
as small experiments, ranging from the automatic (e.g. cock-
ing one’s head to better locate the origin of a sound), to the
deliberate (lifting a suitcase to judge its weight; shaking a
present to try and guess its contents; holding a pool cue to
one eye, or spinning it, to gauge its straightness). A common
element in these examples is that they create situations that
bring into sharper relief the physical properties of interest.

In this paper we explore this naturalistic type of learning by
looking at how people learn about physical laws and proper-
ties, such as magnetism and object mass. The structure of the
paper is as follows. We first survey the literatures on active
learning and intuitive physics, then describe experiments that
contrast passive learners with active and yoked learners. Fi-
nally, we look closely at the types of actions that active partic-
ipants performed to reveal the microworlds’ hidden physical
properties.

Active learning
Human active learning has largely been studied in sim-

ple situations where the space of possible actions is lim-
ited and the hypothesis space is well-defined. Examples in-
clude category rule learning (Gureckis & Markant, 2009) and
games like “Guess Who” (Nelson, Divjak, Gudmundsdot-
tir, Martignon, & Meder, 2014) and “Battleships” (Markant
& Gureckis, 2010). A related line of research has explored
active causal learning, where participants can intervene on
causal systems (Bramley, Lagnado, & Speekenbrink, 2015;
Coenen, Rehder, & Gureckis, 2015; Lagnado & Sloman,
2004). Since many causal structures cannot be distinguished
by co-variational data alone (Steyvers, Tenenbaum, Wagen-
makers, & Blum, 2003), the concept of intervention cap-
tures a key aspect of real world active learning that goes be-
yond simply asking the right questions. The learner’s actions
can effectively create idealized situations that would rarely
happen under normal circumstances, and thus uncover the
true causal relationships. However, the “causal systems” ex-
plored in these studies are invariably causal Bayesian net-
works (Pearl, 2000) where time and space are abstracted
away, and actions are limited to idealized interventions.

In general, these studies found that people select actions
that are more informative than random selection, but that also
tend to be more stereotyped and repetitive than those pre-
scribed by models of optimal active selection. Bramley et
al. (2015) propose that learners tailor their actions to their
own limited learning capacities, testing only a subset of the
possible hypotheses at any given time. If bounded learners
fail to consider the true hypothesis, they can fail to generate
the necessary evidence to support it, and thus perform worse
than passive learners (Markant & Gureckis, 2010). This is a
common problem for active learning algorithms that do not
consider the whole hypothesis space (MacKay, 1992). Peo-
ple are typically found to be bad at balancing the costs of ac-
tive learning against its benefits, typically oversampling, e.g.
taking too many actions when they carry cost (Markant &
Gureckis, 2012). In real-time active learning, this might lead
participants to allocate too much of their limited attentional
resources to controlling rather than learning (Sweller, 1994).

If learners’ actions are tailored to their idiosyncratic learn-
ing trajectories, the evidence they generate may be less use-
ful for other learners, who are considering different hypothe-
ses while observing the active learners’ choices (Markant &
Gureckis, 2014). This view is broadly (Lagnado & Sloman,
2004; Sobel & Kushnir, 2006), but not always (McCormack,
Bramley, Frosch, Patrick, & Lagnado, 2016), supported by
experiments that include yoked conditions, where one partic-
ipant observes the tests performed by another. Intuitively, the
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divergence between information that is in principle available,
and what participants can actually learn will be much larger in
more complex and naturalistic situations, where only a frac-
tion of the total evidence can plausibly be attended to.

Intuitive physics
Early research into intuitive physics focused on document-

ing how people’s understanding of some aspects of physics,
such as ballistic and curvilinear motion, is sometimes system-
atically biased (e.g. McCloskey, Caramazza, & Green, 1980).
More recent research has demonstrated how some of these bi-
ases may be explained if we assume that 1) our physical un-
derstanding is only approximately Newtonian, and 2) we are
often fundamentally uncertain about some important aspects
of the physical scene (e.g., the masses of the objects involved
in a collision, Sanborn, Mansinghka, & Griffiths, 2013).

Battaglia, Hamrick, and Tenenbaum (2013) have argued
that people’s understanding of physics is best understood in
analogy to a physics engine used to model physically realistic
scenes. Accordingly, people have a physics simulator in their
mind that they can use to approximately predict what will
happen in the future (Smith & Vul, 2013), reason about what
happened in the past (Smith & Vul, 2014), or simulate what
would have happened if some aspect of the situation had been
different (Gerstenberg, Goodman, Lagnado, & Tenenbaum,
2015). The results of these experiments are consistent with
the view that people have a rich intuitive theory of physics
that supports approximately accurate mental simulations of
key aspects of physical scenes. However, these experiments
do not address the question of how we get there – how do
people acquire their intuitive physical theories?

Intuitive theories can be expressed as probabilistic pro-
grams (Gerstenberg & Tenenbaum, to appear). Program in-
duction is a thorny problem, but one where human-like per-
formance has been demonstrated by sophisticated Bayesian
machinery embodying principles of causality and composi-
tionality (Lake, Salakhutdinov, & Tenenbaum, 2015). Ull-
man, Stuhlmüller, Goodman, and Tenenbaum (2014) ex-
plored intuitive physics learning by looking at how people
learn about different latent physical properties of 2D “mi-
croworlds” similar to the ones shown in Figure 1. The worlds
were bounded by solid walls and contained a number of col-
ored pucks with differing weights, surfaces with differing lev-
els of friction, as well as local (magnet-like) forces between
pucks and a global (gravity-like) force pulling all the pucks
in one direction. In each clip, the pucks bounced around, at-
tracting and repelling each other, being slowed down by the
friction, and being pulled by the global force. Participants
identified the correct global force around 70% of the time and
were much better at detecting local attraction (82%) than re-
pulsion (53%). Ullman et al. argued that repulsion is more
difficult to identify because pucks that repelled one another
were rarely close enough to exhibit strong repulsion, while
attracting pucks rapidly approached one another and stuck to-
gether, thus offering stronger evidence of the latent force.

Ullman et al. modeled participants’ judgments by assum-
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(a) “Punch” condition in pilot study.
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(b) “Grab” condition in experiment.

Figure 1: Schematic displays of two “microworlds”. Note: In the
pilot there were two pucks of each “type” i.e. two yellow “A”s and
two red “B”s while in the experiment there were two target pucks
and two distractor pucks and all were randomly colored.

ing a mixture of an Ideal Observer Model (IOM) and a Simu-
lation Based Approximation Model (SBAM). The IOM com-
pares the observed objects’ trajectories to simulations of ex-
pected trajectories under the different possible worlds. The
SBAM compared statistics about each clip such as the pucks’
average positions, velocities and pairwise distances, to the
summary statistics of repeated simulations under the differ-
ent possible worlds. For instance, objects in worlds with a
global force towards south generally tend to be closer to the
southern wall of the world. A mixture model that combined
both IOM and SBAM explained participants’ judgments well.

In the current work we build on these results, exploring
how people interact with physical microworlds and how this
impacts on their learning of the different physical properties.

Pilot study: From Passive to Active
For our pilot study we adapted the setup from Ullman et

al. (2014). However, rather than showing participants pre-
chosen replays, we generated the simulations on the fly to
allow for active conditions in which participants could exert
control over the scene. We chose two setups that differed in
the extent to which participants had fine-grained control over
the scene. In the “active punch” condition, participants con-
trolled a fist that allowed them to roughly knock other objects
around, mimicking the clumsy actions of a baby yet to de-
velop fine motor skills. In the “active grab” condition, we
allowed learners to use the mouse to grab the pucks with the
mouse and drag them around, staging more precisely orches-
trated interventions.

We were interested in whether active participants would be
able to use these forms of control to better identify the forces
than the passive participants; or conversely if the costs of con-
trolling while learning would lead to worse performance. We
expected the active learning advantages to be greater in the
fine-grained grab condition, and the costs to be higher for the
punch condition where effective control was harder.

Methods
Participants Sixty participants were recruited through Ama-
zon Mechanical Turk (34 male, age 33.5± 9.7). They were
paid at a rate of $6 per hour.
Materials The experiment was programmed in Javascript us-
ing a port of the Box2D physics game engine. The mi-
croworlds were displayed in a 600× 400 pixel frame, with
1 m in the world corresponding to 100 pixels on the screen.
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Each world was bounded by solid walls with high elasticity
(90% of energy retained per collision) – and contained four
pucks (2 yellow, 2 red, each with radius .25 meters, mass 1 kg
and elasticity 75%). Each world either had a global force
of 1 m/s2 in one of the four compass directions, or no global
force. Each world also had up to three distinct local forces,
one between the yellow pucks, one between the red pucks,
and one between pucks of differing colors. Each of these
could either be attractive (3 m/s2), repulsive (−3 m/s2), or no
force.1 The pucks’ initial positions were random but non-
overlapping, with initial velocities in the x and y direction
drawn from Unif(−10,10)m/s. Whenever all pucks’ veloci-
ties fell below .15 m/s, the simulation froze and the window
went black for 500 ms before the positions and velocities of
the pucks were redrawn. Each world was simulated for 30
seconds at 60 frames per second.

Conditions Participants were randomly assigned to one of
three learning conditions, passive (N = 21), active punch
(N = 20), active grab (N = 19, see Figure 1):

1. Passive Participants observed the microworlds unfold
without being able to interact.

2. “Active punch” In addition to the four pucks, this condi-
tion featured a “fist” (see Figure 1a). The fist was the same
size as the pucks but was heavier (10 kg) and less elastic
(50%). The fist was initially located in the middle of the
screen but strongly attracted to the location of the partici-
pant’s mouse.2

3. “Active grab” In this condition, participants could grab
pucks and drag them around with the mouse. Grabbed
pucks retained their properties (i.e. mass and local forces
and location and momentum) but became strongly attracted
to the position of the mouse. When released they would
continue on their current trajectory but no longer be at-
tracted to the mouse.

Worlds Each participant either passively observed or ac-
tively interacted with 18 microworlds. The set of worlds com-
prised all combinations of the six possible within-color lo-
cal force patterns [None-None, Attract-Attract, Repel-Repel,
None-Attract, None-Repel, Attract-Repel] and the three pos-
sible between-color local forces [None, Attract, Repel]. Half
of the microworlds also had a global force in one of the four
compass directions. Object colors and direction of the global
force were counterbalanced.

Procedure Participants were instructed about the setup of the
microworlds, what judgments they had to make, and – if they
were in an active condition – how they could interact with the
pucks. Participants first saw two practice trials, and then 18

1Local forces scaled with the inverse squared distance between
the objects in line with Newton’s universal law of gravitation. Thus
the current local force L exerted on object o1 by object o2 (and the
reverse) was given by 3

d2 .
2We opted for strong attraction rather than simply copying the

position of the mouse because this allowed the controlled object to
interact reciprocally with the other objects in collisions rather than
behaving as if it was infinitely heavier than the other objects.
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(a) Boxplots of accuracy by condition.
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Figure 2: Pilot study performance plots.

test trials in randomized order.
On each trial, participants answered 4 questions: One ques-

tion about the direction of the global force (response options:
“North”, “East”,“South”,“West”,“None” and “Don’t know”),
and one question each about the local forces between pucks
of the same color (red and yellow), and pucks of differ-
ent color (response options: “Attract”, “None”,“Repel” and
“Don’t know”). Participants took on average 22.4±9.3 min-
utes to complete the experiment.3

Results
Participants in the passive, active punch, and active grab

condition answered on average 64%, 62% and 61% of the
questions correctly. Chance performance was approximately
30%.4 Thus, judgments were well above chance in all three
conditions. However, there was no main effect of condition
on performance F(2,57) = .38, p = .67. As Figure 2a shows,
both the highest and the lowest performing participants were
in the active grab condition, suggesting that an active learning
advantage for this scenario was at least possible although not
generally achieved.

On the global force question people were worse at identify-
ing when there was no force, with accuracy of only 42% when
the right answer was “none” compared to an average of 85%
when the right answer was one of the compass directions.
The accuracy difference for identifying “none” vs. one of the
other forces interacts with condition F(4,294) = 2.6, p= .03,
with only 40% in the active punch and 30% in active grab
condition identifying when there was no global force com-
pared to 57% in the passive condition. For the local force
questions, accuracy differed considerably depending on the
ground truth (Figure 2b). Participants in the active grab con-
dition were better than passive and active punch participants
at identifying repel forces with an overall accuracy of 77%
compared to 68% and 70%.

Due to the simulation restarting whenever all the pucks fell
below a certain velocity (2.0± .8 times per trial on average),
participants in the passive condition actually experienced sig-
nificantly more puck motion than the active participants. We
can see this in terms of the total distance traveled by the four

3Complete specification of the settings of the Box2D simulator
and demos of both experiments are available at
ucl.ac.uk/lagnado-lab/el/apl

4Any “don’t know” responses were treated as judgments spread
evenly across the remaining 3 or 5 options. Random responding
would be correct with probability ≈ 1

4 ×
1
5 +

3
4 ×

1
3 = .3
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colored pucks over the trials of 168± 47, 98± 55, 85± 73
meters for passive, active punch and active grab conditions.

For the participants in the active grab condition, more time
spent manipulating the pucks was positively related to perfor-
mance F(1,17) = 7.2, p = .015.
Interim Discussion

While participants’ overall accuracy was not affected by
learning condition, performance in the active grab condi-
tion was more variable, depending on how much learners
controlled the pucks. Active learners’ lower accuracy on
the global force question indicates that controlling individ-
ual pucks may have led them to neglect the global properties
of the scene (i.e. that the pucks congregated on one side of
the world). Active learners were more accurate at detecting
repulsion, perhaps because they were able to force repellent
pucks closer together and so experience stronger evidence for
repulsion.

There are several possible explanations for the lack of con-
dition differences in overall accuracy. Restarts of the sim-
ulation in the passive condition meant that passive partici-
pants naturally experienced more balanced clips with more
time during which pucks moved and interacted. Active par-
ticipants had to put in work to create these experiences (evi-
denced by the higher variance but lower average puck motion)
that were seen “for free” in the passive condition. Another
possibility is that the setup of the pilot was not well-suited
for active exploration. 30 seconds may have been too little
time to allow for sequential, controlled testing, especially of
four distinct physical properties. Third, end-of-task feedback
suggested that errors were often not due to difficulties in de-
tecting the forces but rather because of having to hold the an-
swers in working memory until the end of the clip; or failure
to segment the different worlds in memory, mixing up proper-
ties experienced in the current versus previously experienced
worlds.

Main Experiment
For our main task we used the same setup as in the pilot

but made a number of changes to address the issues identified
above. Firstly, we improved the match between passive and
active conditions by tweaking the settings of the microworlds
so that objects rarely came to rest within the the length of a
trial. We increased the elasticity of the pucks from 75% to
98%, leading to restarts occurring only in exceptional situa-
tions. Additionally, we replaced the active punch condition
with a yoked condition (cf. Lagnado & Sloman, 2004), in
which participants were matched with one of the active grab
participants and observed their mouse movements and con-
trolling actions. To increase the scope for active hypothesis
testing, we increased the length of the trials and asked more
difficult test questions (see below).

Because active testing is particularly valuable when com-
peting causal explanations cannot be resolved by observa-
tional evidence only, we generated confounded evidence by
including two distractor pucks along with two target pucks
and drew local forces randomly out of attract/none/repel for

Table 1: Experiment design. Note: A = attract, N = none, R = repel;
masses are in kg.

World 1 2 3 4 5 6 7 8 9
Target force A A A N N N R R R

Target 1 mass 1 2 1 1 2 1 1 2 1
Target 2 mass 1 1 2 1 1 2 1 1 2

all pairs of target and distractor objects. This means that it
was more important to isolate the target pucks from the dis-
tractor pucks to get clear information about the target pair-
wise force. Instead of including a global force, which was
easily identified by passive learners, we varied the relative
mass of the two target objects, a property which is more dif-
ficult to infer without experiencing curated comparisons and
interactions between them. To reduce memory load, we asked
two rather than four questions per trial. To make it clear
that each world contained new objects we drew random col-
ors for each object and used new labels, cycling through the
alphabet, for the target objects. To ensure that participants
were motivated to answer the questions as well as they could,
we paid a bonus for each correct response. Finally, to get
a more fine-grained measure of participants’ judgments, we
added confidence sliders for each test question and removed
the “don’t know” option.

We hypothesized that in these worlds active participants
would outperform passive participants, and that yoked partic-
ipants would inherit some, but not all of this advantage.
Methods
Participants Sixty-four participants were recruited from
Amazon Mechanical Turk (39 male, age 33.6± 10.2). Par-
ticipants were paid at a rate of $6 per hour, plus performance-
related bonuses ($0.61± .17) .
Design The first 44 participants were randomly assigned to
either the passive (N = 24) or the active (N = 20) learning
condition, and the final 20 participants were yoked 1-to-1
with the active participants. Each participant watched or in-
teracted with 9 microworlds, consisting of all combinations
of target force in attract, repel and none and target masses
in [1,1]kg, [1,2]kg and [2,1]kg (see Table 1). The five other
pairwise forces were drawn uniformly from the three possibil-
ities for each participant on each trial. There were no global
forces.
Materials and Procedure We used the same basic set up
as in the pilot, but ran the simulations for 45 rather than 30
seconds and increased the elasticity of the pucks from .75 to
.98. Rather than two yellow and two red pucks, we drew
four random colors for each new world. The two target pucks
were labeled with new letters on each trial (e.g. “A” and “B”
on trial one, “C” and “D” on trial two, cf. Figure 1b). The
distractor pucks were all 1 kg as before but now one of the
target pucks could weigh 2 kg. For yoked participants, the
cursor of the participant to whom they were yoked (hereafter
the yoker) was shown with a large “+” symbol whenever it
was within the world, and any objects grabbed by the yoker
were indicated as in the active condition with a thick black
border.
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Figure 3: Examples of different interventions participants performed in the active grab condition.

Participants first completed instructions relevant to their
condition, answered comprehension check questions, and
then faced two practice trials followed by the nine test tri-
als. Practice trials were always worlds 1 and 5 (see Table 1).
The randomly drawn distractor forces, puck colors and la-
bels differed between the practice and test instances. The
two test questions appeared below the world when the time
was up. Question order was counterbalanced between par-
ticipants. At the end of the experiment, participants received
feedback about how many of the test questions they got right,
and were paid a 5c bonus for each correct answer. The exper-
iment took 19.0±7.3 minutes on average.
Results
Overall accuracy Participants answered 53%, 66% and 54%
of questions correctly in the passive, active and yoked con-
ditions respectively (see Figure 4, note chance was ≈ 33%
because there were three response options for both ques-
tions). Average performance differed significantly by con-
dition F(2,61) = 3.8,η2 = .12, p = .03. Post-hoc tests re-
vealed that active participants answered significantly more
questions correctly than passive participants t(42) = 2.5, p =
0.02, and (paired) yoked participants t(19) = 2.9, p = 0.02,
with negligible difference between passive and yoked partic-
ipants t(42) = .2, p = 0.83. Only 4 yoked participants out-
performed their active counterparts, with a further 3 answer-
ing the same number of questions correctly. Yoked partici-
pants’ performance was correlated with their active counter-
parts’ r = .49, p = .03.
Masses vs. relationships Across conditions, participants
were worse at inferring masses than forces t(63) =−4.8, p <
.0001 and reported lower confidence in mass judgments
66 ± 25% compared to force judgments 74 ± 25% t(63) =
−4.2, p < .0001. Again, participants were less accurate in
correctly identifying when there was no force between the
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Figure 4: Performance by condition in the main task. Note: Large
dots indicate condition means. Small dots indicating individual par-
ticipants in are jittered for visibility. Dotted lines connect active
participants with matched yoked participants.

target pucks (56%) than repulsion (70%) or attraction (78%),
with a main effect of question type F(2,189) = 7.7, p <
.0001 and significant improvements going from no force to
attraction t(126) = 3.9, p = .0001 and repulsion t(126) =
2.4, p = .017. Force type additionally interacted with con-
dition F(6,183) = 3.0, p < .0001. Dummy contrasts with
no force and passive as controls revealed active participants
were significantly better at identifying repel than passive par-
ticipants t(42) = 3.2, p < .0001 and a marginal improvement
for yoked participants as well t(42) = 1.9, p < .058 . There
was no significant relationship between accuracy on the local
force question and the number of distractor forces.

Confidence judgments differed by condition F(2,61) =
5.3,η2 = .15, p = .007, with active participants significantly
more confident on average than passive t(42) = 2.8p = .006
or yoked participants t(38) = 2.9, p = .006. Confidence was
positively correlated with accuracy F(1,62) = 10.6,η2 =
.15, p = .002 but did not interact with condition.
Natural experiments Active participants experienced
slightly fewer between-puck collisions than passive partici-
pants, 59± 14 compared to 65± 9, t(42) = 2.0, p = 0.056.
However they experienced significantly more collisions
between the two target pucks 15.0 ± 8.1, compared to
9.8± 4.4, t(42) = 2.7, p = 0.01. 13.2± 7.8 of collisions in
the active condition took place while one of the two target
objects was being controlled by the participant.

Time spent controlling objects was positively related to fi-
nal performance for active and yoked participants F(1,38) =
4.8,η2 = 11, p = 0.04. Therefore, a key question is what
kinds of experiments active participants used to find answers
to the test questions. Space constraints prohibit a full anal-
ysis in the present paper, but we want to share some of
the strategies that participants discovered (see Figure 3 and
ucl.ac.uk/lagnado-lab/aplc):

(a) Deconfounding Even though participants mainly manip-
ulated the target pucks, they also sometimes manipulated the
distractor pucks. Many of these manipulations involved mov-
ing the distractor pucks out of the way and leaving them at
rest in a far corner.
(b) Encroaching Participants grabbed one target puck and
brought it toward the other target puck. This simple strat-
egy allowed participants to infer whether and how the two
pucks affected one another. In some cases, participants towed
one attracting puck with the other, or pushed a repulsive
puck around with the other providing a strong and extended
demonstration of the force between the pucks.
(c) Launching Participants grabbed one of the target pucks
and flicked it against the other target puck. This intervention

2571



helps to figure out whether one of the targets is heavier than
the other.
(d) Knocking Similar to launching, participants grabbed
one of the target pucks and knocked it against the other (with-
out letting it go). This intervention also reveals information
about the mass of each object.
(e) Throwing Participants grabbed a target puck and then
threw it, explicitly avoiding collision with any of the other
pucks. By exerting an identical force when throwing each
target puck, the results of the intervention help to figure out
the mass of each object.
(f) Shaking Some participants discovered an effective strat-
egy for comparing the mass of the two target objects. By
rapidly shaking each in turn (moving the mouse from side
to side) it was possible to see that the heavier object reacted
more slugglishly. Its greater momentum takes longer to be
counteracted by its attraction to the mouse location.

In line with encroaching (Figure 3b), we see evidence that
participants in the active condition identified the local forces
by bringing the two target pucks close to each other. The
lower the average distance between two target objects for an
active participant, the better they did on the force question
β =−.3,F(1,18) = 8.0,η2 = .3, p = .001 but this had no re-
lationship with accuracy on the mass question p = .87. Con-
versely, in line with the shaking strategy (Figure 3f), partici-
pants who moved the controlled object around faster did bet-
ter on the mass question β = 25,F(1,18) = 15,η2 = .45, p <
0.001, but controlled object speed had no relationship with
accuracy on the force question p = .67. Yoked participants
did not inherit these differences, with no significant relation-
ships between performance on either question and average
distance between targets or controlled-object speed.
Discussion

We found a clear benefit for active over passive learning
in this experiment. In particular, active participants gathered
more evidence about repulsive forces by bringing target ob-
jects closer together. The quality of the control exerted by the
active participants was an important determinant of the qual-
ity of the final evidence available to the yoked participants.
However, the substantial drop-off from active to yoked accu-
racy was consistent with the idea that first-hand knowledge of
what was being tested (e.g. relationship or mass), when and
how, was likely to be crucial for learning successfully. Since
there are too many objects and properties in play to track at
once, it helps to align the evidence with the hypotheses cur-
rently considered. Another factor might have been that active
participants were able to look ahead at the crucial locations in
the scenes where diagnostic interactions were expected to oc-
cur. Yoked participants lacked the ability to foresee what will
happen. Finally, active participants had an additional advan-
tage over yoked participants by receiving direct motor feed-
back about their interventions. They experienced how quickly
they moved the mouse or their finger on the trackpad and thus
had an immediate sense for how much force they exerted.

Encroaching and shaking permitted simple indirect mea-

sures, and accordingly, we found shakers doing better on
mass questions and encroachers doing better on relationship
questions.

While the current study provides a valuable first step, there
is much more to explore here. In future work we plan to ex-
tend the IOM and SBAM models to active data and use them
to evaluate the informativeness of different strategies. We
also plan to explore the possibility that learners have a gen-
erative grammar for constructing natural experiments; and to
unpack yoking differences by looking at yoked participants’
ability to infer the learning intentions and action plans of ac-
tive learners.
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