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Abstract

What is the best way of figuring out the structure of a causal
system composed of multiple variables? One prominent idea
is that learners should manipulate each candidate variable in
isolation to avoid confounds (known as the “Control of Vari-
ables” strategy). Here, we demonstrate that this strategy is not
always the most efficient method for learning. Using an opti-
mal learner model which aims to minimize the number of tests,
we show that when a causal system is sparse, that is, when
the outcome of interest has few or even just one actual cause
among the candidate variables, it is more efficient to test mul-
tiple variables at once. In a series of behavioral experiments,
we then show that people are sensitive to causal sparsity when
planning causal experiments.

Keywords: information search; causal learning; hypothesis
testing

Introduction
To develop a causal understanding of the world, we often
need to find out how multiple candidate variables affect an
outcome of interest. This problem arises in everyday situa-
tions (e.g., “Which of these switches can turn on the bath-
room fan?”), during scientific exploration (“Which of these
chemicals affect reaction x?”), and plays a role in answering
economic and social questions (“How do these policies af-
fect GDP?”). Often, the quickest and most effective method
of resolving the causal relationships between variables and
outcomes is to conduct experiments that manipulate variables
(e.g., turning switches on or off) and help to decouple causa-
tion and correlation (Pearl, 2009).

In this paper, we explore how people interact with a novel
causal system to understand how it works by manipulating
multiple independent variables over a series of trials. We start
by introducing two strategies for causal experimentation, one
of which is so well known that it is codified in contemporary
STEM education standards. We then describe an analysis of
an optimal experimenter (i.e., an ideal actor model) which
shows how the most informative strategy for learning criti-
cally depends on a learner’s knowledge about the number of
causes among the variables. We then evaluate the predictions
of this model in three behavioral experiments.

Test one variable at a time
The problem of disambiguating the effects of multiple vari-
ables has a long history in developmental psychology and ed-
ucation. Starting with Piaget (Inhelder & Piaget, 1958), many
educators and psychologists have stressed the importance of
controlling or isolating variables. One important procedural
component of this approach is the experimental strategy of
changing one variable at a time and observing its effect while
holding all other variables constant. In the STEM education

literature, considerable emphasis has been placed on teach-
ing children this controlling variables strategy (e.g., Chen &
Klahr, 1999; Kuhn & Brannock, 1977). In fact, it even ap-
pears in national standards for science education (National
Academy of Sciences, 2013). A common finding from em-
pirical studies is that children require extensive training to
acquire the CV principle (e.g., Kuhn et al., 1995; Klahr,
Fay, & Dunbar, 1993; Kuhn & Phelps, 1982). Adults and
adolescents, although more likely to use the strategy spon-
taneously, sometimes also have a tendency to test multiple
features at once instead of testing them one-by-one (Kuhn et
al., 1995). Interesting exceptions have been found in more
complex tasks. For example, Bramley, Dayan, Griffiths,
and Lagnado (2017) tested people’s intervention strategies in
completely unconstrained multivariate systems (with no dis-
tinction between potential causes and outcomes) and found
that participants often focused on testing one causal relation-
ship at a time by holding most variables at a constant value.

In sum, CV is a widely regarded epistemic principle for
learning about causal systems composed of multiple vari-
ables. A key advantage of a CV strategy is that it results in
unconfounded data that is easy to interpret. Empirical work
suggests that acquiring the ability to use the CV principle can
be challenging, but adults sometimes adopt it more in com-
plex tasks.

Test half or test multiple variables
Changing variables one-by-one has the benefit of isolating the
effect of every variable without confounding influence of the
others. It is therefore particularly helpful when one believes
that many variables are causes of the outcome. However, con-
sider the case in which a learner expects only very few, and
perhaps just a single variable to have a causal relationship to
the outcome, but is faced with a number of equally plausi-
ble candidate variables. In that case, an alternative strategy is
to test multiple variables at once to see if any of them affect
the outcome at all. For example, imagine trying to figure out
which out of 20 switches in a poorly labeled basement fuse-
box controls the bedroom fan. An optimal strategy for finding
this switch is to turn on exactly half (10) of the switches to
find out which half contains the target switch and then con-
tinue halving the remaining possibilities until only one switch
remains. Compared to testing switches one-by-one, this will
dramatically reduce the number of trips needed for checking
what effect the current switch setting has on the fan.

This Test Multiple or (more specifically) Test Half strategy
has been studied by psychologists in a slightly different type
of information-seeking task, often based on popular games as
“Twenty questions” or “Guess who?”. In these games, chil-



dren or adults have to identify a target object, person or cause
among a given set by asking as few yes/no questions as pos-
sible. Here too, the optimal strategy (in terms of expected in-
formation gain, see next section) is to ask about features that
apply to half the possibilities under consideration (e.g., “Is
the person female?”, if the hypotheses are people and half are
each sex), since it can reduce the number of possibilities more
rapidly than asking about specific identities directly (e.g.,
Navarro & Perfors, 2011). Both children and adults have
been shown to use this method successfully (Nelson, Div-
jak, Gudmundsdottir, Martignon, & Meder, 2014; Ruggeri
& Lombrozo, 2015). Interestingly, any Test Multiple strategy
would be considered an error from the perspective of the ed-
ucation literature (e.g., a student adopting this strategy might
be coded as failing an STEM education assessment), because
by changing many things at once it momentarily confounds
the influence of individual variables.

The Test One and Test Multiple/Half strategies are typi-
cally studied in different kinds of psychological tasks. How-
ever, as the switch example from above illustrates, they can
both be reasonable approaches for testing the causal impact
of multiple variables. Next, we show how the effectiveness
of each strategy depends on the structure of the task.

Sparsity determines effectiveness of strategies
As the switch example shows, an important factor that de-
termines the effectiveness of a Test One or a Test Multiple
strategy is the sparsity of a causal system. We define spar-
sity as the proportion of causes among variables (for related
definitions and discussions of the importance of sparsity for
hypothesis testing, see e.g., Navarro & Perfors, 2011; Langs-
ford, Hendrickson, Perfors, & Navarro, 2014). In sparse en-
vironments (e.g., when we know that only one in 20 switches
controls the fan), a learner can quickly narrow in on an ef-
fective cause by trying many variables at once. In contrast, if
there are (known to be) many causes, trying many things at
once will tend to be uninformative as the effect will almost al-
ways be generated and little will be learned about which vari-
able(s) were responsible. The choice of an effective testing
strategy in a particular situation is thus a question of ecologi-
cal rationality.

Modeling the effect of sparsity To formalize this intuition,
assume that a learner is faced with a simple causal system
with N binary independent input variables, I, and a single
binary outcome, o. Given the subset of input variables, C ⊆
I that, when active, can cause the outcome to happen, the
probability of the outcome given the current setting of inputs
is

P(o = 1) =

{
1, if ∃ c ∈C (c = 1),
0, otherwise

In other words, the outcome occurs if and only if any of the
input variables in C are currently active.

The learner must now decide how to manipulate the input
variables to best figure out which of them are causes (i.e.,
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Figure 1: Effect of the number of causes, |C|, and the number
of variables, N, on the number of variables tested.

which are members of C). We assume that the learner’s op-
timal strategy lies in choosing a switch setting, s ∈ S, that
maximizes the expected Information Gain with respect to the
system. Information gain is a common metric for quantify-
ing the value of information-seeking actions, including causal
interventions. It is computed as the expected difference of
a learner’s current uncertainty over their hypotheses H, and
their expected new uncertainty after having made an inter-
vention on the system and observed an outcome. In this case,
a learner’s hypotheses H are all possible compositions of the
set of causes, C, and there are two possible outcomes (o = 1
or o = 0). Thus a learner’s expected information gain is

EIG(s|H) = SE(H)−
1

∑
j=0

P(o = j|s) SE(H|s), (1)

where SE denotes the Shannon Entropy over a distribution
of beliefs (Shannon & Weaver, 1949). To investigate the im-
pact of causal sparsity, we use this model to explore how a
learner’s belief about sparsity affects the optimal strategy.

Figure 1 shows model predictions for the number of vari-
ables an optimal learner should manipulate upon their first
encounter with a system of variables, based on their knowl-
edge about the number of causes, |C|, and the number of vari-
ables in the system, N, assuming a uniform belief over all re-
maining hypotheses. In line with the intuition outlined above,
when a learner expects only one cause the model predicts a
Test Half strategy. As the number of causes increases (that
is, as causal sparsity decreases), the optimal number of ma-
nipulated variables decreases and quickly reaches the strat-
egy of changing only a single variable. This relationship is
modulated by the total number of variables, which increases
the degree of causal sparsity and consequently the number of
variables that should be manipulated.

These results show that the causal sparsity of an environ-
ment should affect a learner’s strategy for manipulating bi-
nary variables to find out how they affect some outcome of
interest. This means that, even in the same task, there can ex-
ist a continuum of optimal strategies with respect to the num-
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Figure 2: Wooden box used in Experiment 1.

ber of variables changed, which ranges from a Test Half to a
Test One method. This observation leads to the core predic-
tion we test in this paper. We hypothesize that when learning
a causal system, people will use different strategies depend-
ing on their belief about the sparsity of the system. This result
would offer a further demonstration that human intervention
strategies are ecologically rational, in the sense of being well
matched to the environment within which they are needed.

Experiments
We now present three experiments that investigate how
knowledge about sparsity affects people’s causal testing
strategies. Sparsity is manipulated in two ways, both sug-
gested by the model results shown in Figure 1. We first vary
the number of causes (i.e., variables that affect the outcome)
in a system (Exp. 1 & 2) and second the number of total
variables available for testing (Exp. 2). We also investigate
what strategies people select given no prior instructions about
sparsity (Exp. 3).

Experiment 1 - manipulating number of causes
Participants 30 participants were recruited via the subject
pool of New York University’s Department of Psychology.
Participants were paid at a rate of $5 per hour and could win
an additional bonus of up to $3 (see below).

Stimuli Participants were presented with the wooden box
depicted in Figure 2. The box had six different switches (in-
puts), a yellow wheel (output) and a red activation toggle.
Each switch could be turned to the left (off) or the right (on).
The activation toggle controlled whether the entire box was
turned on or off. Participants were randomly assigned to one
of two experimental conditions. In the sparse condition, only
one of the switches caused the wheel to spin, whereas the
remaining five switches were broken. In the non-sparse con-
dition, five switches caused the wheel to spin and one switch
was broken. A single working switch was sufficient to acti-
vate the wheel, and the position of the broken switches had
no effect whatsoever. The wheel could only be activated if
the activation toggle was currently in its on-position. Other-
wise, participants were told that the box was turned off. The
working and broken switches were chosen randomly for each
participant. At the beginning of the experiment, participants

were given six plastic tokens, each of which was worth $0.50.
Participants had to pay one token every time they wanted to
turn on the box via the activation toggle (see below).

Procedure Participants were first familiarized with the
components on the box. They were told about the the binary
(on/off) nature of the switches, and the difference between
broken and working switches. Depending on the condition,
participants were then told that they had to to identify
the one broken switch (non-sparse condition) or the one
working switch (sparse condition). Before starting the task,
participants in both conditions were shown the same two
demonstration trials. First, while the activation toggle was
turned off, the experimenter turned all six switches to their
on position and subsequently turned on the activation toggle,
causing the wheel to spin. Second, after turning the activation
toggle off again, the experimenter set all switches to their off
state and turned the activation toggle back on, which did not
cause the wheel to spin. In the main part of the experiment,
participants could repeatedly test different settings of the
switches to find out which one was broken/working. On each
trial, they could change the switches in any way they liked
while the activation toggle was off. They could then test
their chosen switch setting by turning the activation toggle
on and observing the effect on the wheel. Before the start of
each new trial, the activation toggle had to be turned off again.

To incentivize participants to use as few trials as possible,
they had to pay one of their six plastic tokens (worth $0.50
each) for each time they performed a test by inserting it into
a coin slot on the box. Participants could test the box up to
six times (hence the use of six tokens), but could stop when-
ever they thought they had identified the one broken/working
switch. After their final test, they indicated to the experi-
menter which of the switches was broken/working. If their
choice was correct, they could trade in any remaining tokens
for their corresponding monetary value. If it was incorrect or
they used up all their tokens, they received no bonus.

Results To characterize participants’ trial-by-trial behav-
ior at a strategy level, we used the following classification
scheme. In the non-sparse condition, participants’ strategies
were classified as Test One if they turned on one switch on
every trial, while leaving all other switches turned off. If
a participant manipulated multiple switches or kept testing
the same switch more than once, their strategy was classi-
fied as Other. In the sparse condition, participants’ strategies
were classified as Test One if participants turned on one new
switch each trial, even when they left previously tested, but
ineffective, switches turned on. This is because these past
switches would have shown to be broken and therefore could
not contribute confounding evidence on future tests. Partic-
ipants’ strategies were classified as Test Multiple if partici-
pants tested half or multiple of the switches. As a sequen-
tial strategy, Test Half does not have a meaningful defini-
tion for participants in the non-sparse group, who would al-
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Figure 3: Strategy use in Experiment 1

ways encounter confounding evidence when changing mul-
tiple switches. Note that we also classified participants as
Test One or Test Multiple if they had some interspersed trials
with zero Information Gain (e.g., from repeating the same test
twice), assuming that they were using a more noisy version of
the respective strategy.1

Figure 3 shows the number of participants using each
testing strategy in the two conditions. For the purposes of
this figure, the classification was based on a participant’s
sequence of tests up to the point at which an optimal learner
would have been able to correctly identify the working or
broken switch (some participants made further unnecessary
tests). Note that, among participants classified as “Test
Multiple”, everyone actually manipulated exactly half of the
switches (i.e., they used the optimal strategy according to our
optimal model). We kept the more general classification as
Test Multiple, to stay consistent with the results presented
in the next experiment. The number of participants using a
Test One strategy was lower in the sparse condition (4 in 15
vs. 14 in 15, Fisher’s exact p < 0.001). However, even in the
sparse condition around a quarter of the participants decided
to change one variable at a time.

In sum, as predicted by the optimal learner model pre-
sented above, Experiment 1 found that instructing partici-
pants to expect either a sparse (one cause) or a non-sparse
(five causes) environment, had an effect on how they pro-
ceeded to manipulate a set of six variables. However, even
in the sparse condition, we found that some use of the less ef-
fective Test One strategy persists. The following experiments
explore possible explanations for this finding.

Experiment 2 - manipulating number of variables
Experiment 2 explores whether increasing the amount of
sparsity by adding more variables would lead to more partici-
pants to adopt a Test Half strategy. In Experiment 1, the bene-
fit of testing multiple variables over testing variables one-by-
one was relatively modest. In fact, testing half of the variables
in the sparse condition would save participants less than one

1The precise details of the strategy classification had to be omit-
ted from this paper for space reasons, but will appear in a longer
version of this manuscript that is currently under review.
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Figure 4: Expected number of trials needed to find the work-
ing switch in the sparse condition, when using a Test One or
Test Half strategy.

step (2/3 of a step) on average, compared to testing variables
individually (this difference translated to an average saving of
∼$0.33). This may have not provided sufficient incentive for
participants to realize that a Test Half strategy would be more
advantageous. As discussed above, one way to amplify the
sparsity manipulation is to add more variables (see Figure 1).
To illustrate the effect on the expected payoff from the two
strategies, Figure 4 shows the average number of tests needed
to find the working switch for a learner in a sparse (one cause)
environment employing either a Test One or a Test Half strat-
egy. It shows that as the number of switches increases, so
does the benefit of the Test Half strategy over the Test One
strategy.

To test if people are sensitive to the degree of sparsity, Ex-
periment 2 manipulated the number of variables (switches).
Participants on Amazon Mechanical Turk completed the
same task as in Experiment 1, but were presented with either
4, 6, 10, or 20 switches (all manipulations were between-
subjects). As before, they were given either sparse (one
switch working) or non-sparse (one broken) instructions. Al-
though adding variables should have no effect on behavior
in the non-sparse condition, we decided to keep the manip-
ulation to ensure that adding variables does not encourage a
general increase in the number of variables participants would
test on each trial. By including the 6 switches condition again,
this experiment also served to replicate the results from Ex-
periment 1 with an online sample.
Participants 120 participants were recruited on Amazon
Mechanical Turk. Recruitment was restricted to AMT work-
ers within the United States aged 18 or above. Participants
were paid $0.50 for their participation, with the possibility of
earning an additional bonus of up to $1 (see below).
Stimuli The task from Experiment 1 was adapted as faith-
fully as possible to be run on the web with some minor
changes. Instead of a wheel, the outcome of interest was
a light bulb, which lit up when it was turned on, and re-
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Figure 5: Strategy use in Experiment 2

mained gray otherwise. All switches were of the same kind
and would turn green when on and red when off.
Procedure The experiment followed a 4 x 2 between-
subjects design. Participants received different versions of the
task with either 4, 6, 10, or 20 switches, and were given ei-
ther the sparse or the non-sparse instructions. The procedure
was the same as in Experiment 1. Participants received sim-
ilar instructions and were also asked to perform two demon-
stration trials in which first all and then none of the switches
were turned on, to show that the light bulb would turn on and
stay off, respectively. The per-trial payment was adjusted de-
pending on condition, such that participants had to pay either
$0.25, $0.16, $0.1, or $0.05 per additional test in the 4, 6, 10,
or 20 switches conditions, respectively. These payments were
chosen so that the total potential bonus (starting at $1) would
be zero if participants decided to test every single switch in
isolation.
Results Figure 5 shows the frequency of the Test One, Test
Multiple, and Other strategies by condition. In the non-sparse
group a large majority of participants changed a single vari-
able at a time, irrespective of the number of switches. In the
sparse condition, however, the proportion of Test One users
varied with the number of switches (Fisher’s exact, p < .05),
such that participants confronted with more switches (10 or
20) were less likely to test individual switches than those
confronted fewer (4 or 6). This development was also
accompanied by the expected increase in strategy efficiency,
such that the number of trials participants saved on average
in the sparse condition compared to the non-sparse condition
increased from 0.15 trials in the 4 variable condition to 6.53
trials in the 20 variable condition, in line with the predictions
in Figure 4.

These results provide further evidence that information
about sparsity affects how people learn actively in multiple-
variable settings. Again, participants in the sparse group
were more likely to manipulate multiple variables at a time,
whereas those with in the non-sparse group chose to manip-
ulate variables one-by-one. Furthermore, participants in the
sparse condition, in which there is only one cause, were sensi-
tive to the total number of variables. The more switches were
presented to participants (the more sparse the environment),

the more prominent was their use of a Test Multiple strat-
egy. Nevertheless, this experiment also replicated the finding
from Experiment 1 that in the absence of a strong incentive to
do otherwise, people have a tendency to change single vari-
ables, rather than multiple. In fact, the web sample revealed,
if anything, an even stronger tendency to use a Test One strat-
egy in the sparse condition, particularly when the number of
switches was small.

Experiment 3 - no sparsity information
Experiments 1 and 2 suggest that testing one variable at a
time might serve as a default strategy that is only overridden,
to some degree, by knowledge about the number of causes.
To explore this possibility further, Experiment 3 asked what
strategy people would use to test a multi-variable system
when they had no prior information about the number of
causes to begin with. By giving participants vague instruc-
tions, we aimed to instill an approximately flat “prior” over
all possible combinations of working and broken switches.

Participants 57 participants were recruited on Amazon
Mechanical Turk. Recruitment was restricted to AMT work-
ers within the United States aged 18 or above. Participants
were paid $0.50 for their participation, with the possibility of
earning an additional bonus of up to $1.

Stimuli Materials were the same as the 6-switch condition
of Experiment 2. In a between-subject design participants
were again randomly assigned to a switchboard that either
had one broken or one working switch.

Procedure The procedure was the same as in the previous
Experiment, with the exception that participants were given
the same set of instructions about the number of causes in
both conditions. Instead of being told to find the one bro-
ken or one working switch, they were instructed to “find
out which switch(es) are working or broken”. After the
switch testing phase, participants were asked to indicate
which switch(es) were working or broken, now being able
to make multiple selections.

Results Figure 6 shows the proportion of participants that
chose to turn on any possible number of switches on the very
first trial. Data is collapsed over both conditions, since the
initial instructions were the same and hence the first trial
should not lead to different behaviors. The vast majority of
participants (%58) chose to manipulate a single switch, with
only a small number (%10) manipulating half.

This experiment verified that with no instructions about
sparsity, the majority of participants chose to manipulate vari-
ables one-by-one. Note that an optimal learner initialized
with a flat prior (which translates into 26 hypotheses, given
6 switches, each with a prior probability of 1

26 ) also assigns
higher expected Information Gain to testing one over testing
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Figure 6: Number of switches tested on the first trial of Ex-
periment 3.

multiple variables. Therefore, the Test One “default” shown
by some participants in earlier experiments, could stem from
them ignoring the constrained prior that they were instructed
on and instead acting as if they knew nothing about the spar-
sity of the system. This behavior would still be in line with
the optimal learner analysis presented above.

General Discussion
In a series of experiments, we found that, in line with an op-
timal learner model, people’s strategies to manipulate multi-
variate causal systems take into account the causal sparsity
of the system. In non-sparse environments (e.g., only one
non-cause) the majority of participants adhered to a strategy
of testing one variable at a time, in line with a “Control-
ling Variables” principle (Kuhn & Brannock, 1977). When
causes were sparse (e.g., only one cause) participants were
more likely to manipulate multiple (often half) of the candi-
date variables. We also found that increasing the degree of
sparsity, by increasing the total number of variables, ampli-
fied this effect on people’s strategy choices.

These findings demonstrate that people adaptively change
their causal experimentation strategies in response to knowl-
edge about the environment. Our study thus offers an ex-
ample of the importance of “ecological learning” that allows
people to flexibly adapt their inquiry strategies to the infor-
mation structure of the task (Ruggeri & Lombrozo, 2015).
This idea tallies with other recent work on causal interven-
tions showing that people’s strategy choices were made adap-
tively with respect to internal constraints, like cognitive load,
and external factors like the match of a strategy and the task
environment (Coenen, Rehder, & Gureckis, 2015). In find-
ing that sparsity affects behavior, the experiments above also
add to recent evidence from other (spatial) information search
tasks, in which hypothesis sparsity was shown to affect peo-
ple’s hypothesis testing strategies (Hendrickson, Navarro, &
Perfors, 2016).

Interestingly, we also found that even in sparse environ-
ments a proportion of participants chose to test variables in-
dividually, despite the fact that changing multiple variables
would have been more efficient. This is somewhat surprising
since prior work has often found that the Controlling Vari-
ables principle is difficult to teach and often violated even

by adults (Kuhn et al., 1995). It is thus intriguing to think
about why we found such pervasive use of a CV strategy.
One possibility is that a Test One strategy is less risky than
changing multiple variables under a wide range of possible
prior beliefs about the system. If the underlying system is not
sparse, changing multiple variables can result in ambiguous
evidence and often no information gain. However, chang-
ing variables one-by-one will be informative even in a sparse
environment. With some degree of uncertainty about the cur-
rent environment, a learner might therefore just be better off
testing one variable at a time. Another contributing factor
might be the that changing one variable at a time is explic-
itly taught in schools as a principle of scientific experimenta-
tion (National Academy of Sciences, 2013). It is interesting
to consider whether this curriculum standard might actually
in some cases hinder efficient experimentation by promoting
a narrow focus on the idea of testing variables individually,
irrespective of situation specifics.
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